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Abstract
Tremendous advances have beenmade in our understanding of the properties and evolution of
complex networks. These advances were initially driven by information-poor empirical networks and
theoretical analysis of unweighted and undirected graphs. Recently, information-rich empirical data
complex networks supported the development ofmore sophisticatedmodels that include edge
directionality andweight properties, andmultiple layers.Many studies still focus on unweighted
undirected description of networks, prompting an essential question: how to identify when amodel is
simpler than itmust be?Here, we argue that the presence of centrality anomalies in complex networks
is a result ofmodel over-simplification. Specifically, we investigate thewell-known anomaly in
betweenness centrality for transportation networks, according towhich highly connected nodes are
not necessarily themost central. Using a broad class of networkmodels withweights and spatial
constraints and four large data sets of transportation networks, we show that the unweighted
projection of the structure of these networks can exhibit a significant fraction of anomalous nodes
compared to a randomnullmodel. However, theweighted projection of these networks, compared
with an appropriated nullmodel, significantly reduces the fraction of anomalies observed, suggesting
that centrality anomalies are a symptomofmodel over-simplification. Because lack of information-
rich data is a common challengewhen dealingwith complex networks and can cause anomalies that
misestimate the role of nodes in the system,we argue that sufficiently sophisticatedmodels be used
when anomalies are detected.

Introduction

The study of complex networks produced fruitful results inmany areas of knowledge, from systems biology
[1, 2] and social systems [3, 4] to epidemiology [5–7] and statistical physics [8, 9]. The initial focus of complex
networks and graph theorywas on undirected, unweighted topologies [9, 10]. Using unweighted network
projections,many properties were proved to be effective in describing complex systems [11–14].More recently,
weighted, directed,multiplexed networks have been the focus ofmuch research attention. Inmany cases, these
more sophisticated representations of the system aremost appropriate to describe real-world networks [15–18].
Despite it, researchers still fall back on representing a system’s network of interactions as if it was undirected and
unweighted,many times because of the lack of information-rich data sets.
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This is the case of gene regulatory networks, where usually direction, strengths, and signs of the links are
overlooked because of the lack of complete data [19]. Another case where empirical studies have overlooked the
details of the system is the case ofmultipartite networks [20]. This class of systems comprises networks with
multiple groups that can only interact through nodes of different types. However, because of the lack of
information-rich data sets, these systems are usually studied after projection onto networks of one single type of
node. Thus, the question is how to determinewhen such amodel is good enough to represent the system,
especially in the absence of data for testing simulation predictions.

Here, we focus on the case of weighted networks projected onto unweighted networks.We propose that the
presence of anomalies in the structure of the undirected and unweighted projection of the network can be a
result of a situationwhere amodel is simpler than itmust be.Our starting observation is the report of
betweenness centrality anomalies in transportation networks [21]. This simplemeasure can capture the
importance of a node to connect different parts of the network [9] by themeans of howoften it stands between
other nodes. Guimerà et al reported that nodes with a large degree in air transportation networks do not
necessarily have the highest betweenness centrality, whereas some lowdegree nodes can have large betweenness
centralities. The emergence of these anomalies has been attributed to themulti-community structure of the
network and spatial constraints such as geopolitical boundaries [21–23]. Nevertheless, the generalmechanisms
governing the emergence of such anomalies remain unknown.

In order to tackle these questions, we investigate a broad class of networkmodels withweights and spatial
constraints and the structure of four transportation networks. Our analysis reveals that, like for the class of
model networks, unweighted transportation networks exhibit centrality anomalies for a significant fraction of
the nodes comparedwith an appropriate nullmodel with the same degree distribution.However, these
anomalies disappear whenwe consider weighted representations of the network.Our findings support the
hypothesis that such centrality anomalies are a symptomof amodel that is simpler than itmust be.

Becausemodel over-simplificationmight lead to anomalies that wouldmisestimate the role of nodes in the
system, ourfindings have direct implications for themodeling of dynamical processes on complex networks
where betweenness centrality is used tomeasure the influence of nodes, such as in themodeling of human
dynamics [24], the spread of diseases [25, 26], crime spreading [27], and spatial networks [22, 23].Moreover,
they also hint at the significant challenges whenmodeling biological [19], economic, or social phenomena
because data incompleteness is so pervasive.

Results

Centrality anomalies
Wecollected extensive data for four large scale transportation networks: Brazil, Great Britain, and Spain bus
transportation networks, and theworldwide air transportation network.We define an inter-city bus
transportation network by assigning a node to each of theNmunicipalities (with at least one bus station) and
assigning an undirected edge between two nodes if the two stops i and j are connected by at least one bus route.
Throughout the period observed for each data set, the same route can be offered bymore than one company and
multiple times by a single company (seemethods for details). This fact enables us to define theweight of the edge,
wij, as the total number of buses offered by all companies over the observation period (figure 1).

In theworldwide air transportation network, each node represents a city. As a consequence, if there are
multiple airports serving the same city, we assign the relevant airports to a single node. For example, JFK, La
Guardia, andNewark airports are all assigned to theNewYorkCity node.We assigned undirected edges between
two nodes i and j if the two cities were connected by at least one air route. Because not all air routes have daily or
greater frequency, and in order not to drop less-traveled cities, we collected information onflights occurring
during theweek of 17May, 2018–22May, 2018. As for the bus transportation networks, the same route can be
offered bymore than one company andmultiple times a day by the same company. Thus, we defined theweight
of an edge,wij, as the total number offlights offered by different companiesflying the route during the
observation period (figure 1).

Several studies have reported that spatial networks, such as the ones we study here, can exhibit centrality
anomalies [21, 22, 28, 29]—that is, the betweenness centrality of a node is not necessarily proportional to its
degree squared. First, we investigate towhat extent these centrality anomalies are due to the over-simplification
of the networks. Specifically, wefirst calculate the betweenness centrality b and degree k of the nodes for an
unweighted projection of the network. The betweenness centrality of node i counts the fraction of shortest paths
connecting all pairs of nodes that pass through node i but do not include node i [30]. Figure 2 shows the
betweenness centrality versus degree for the networks studied here.

In order tomake sense of the observed values of the betweenness and their relationshipwith the degree, we
compare themeasurements for the four transportation networks to the expected values for ensembles of
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randomized networks with the same degree distributions. In order to provide consistencywith later analyses, we
do not use the typicalMarkov chainMonte Carlo edge switching approach, inwhich the structural constraints
are satisfied exactly (i.e.microcanonical ensemble), and instead implement the undirected binary configuration
model (UBCM) [31], where the constraints aremet on average over the ensemble (i.e. canonical ensemble)
[32–34]. In theUBCM, edges are placed at random following a distribution that preserves, on average, the
original degree distribution observed in the data (seemethods).

As has been reported earlier [21, 28], the betweennesses obtained for the randomized networks do not
recapitulate those observed for the empirical networks. That is, whereas there is an approximate scaling of the
betweenness with the degree squared for the randomized networks, for the empirical networks one findsmany
nodeswith large deviations from that scaling relationship.

Model networks
It has been proposed that the existence of these centrality anomalies is due to the presence of spatial constraints
and the special role, due to economic or political considerations, that some citiesmight have [22, 23, 28].
However, the precise factors driving the emergence of such anomalies remain unknown.

To investigate the generality of ourfindings, we next study a class of spatial weighted networks generated
using the strength driven preferential attachment with spatial selection (SDPASS)model, which has been reported
to produce centrality anomalies [22]. In thismodel,N0 initial nodes are randomly located on a two-dimensional
disc of radius L according to a uniformdistribution and they are connected by linkswithweightsw0. At each
time-step, a newnode i is placed randomly on the disc, following a uniformdistribution. The newnode is
connected tom previously existent nodes that are preferentially near and have the largest strength, according to
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where rc is a desired spatial scale, si is the strength of the node (i.e. = ås wi j ij), and dli is the Euclidean distance
between nodes l and i. The new edge (i, j) has afixedweightw0 and the creation of this edge perturbs the existing
links attached to node j. To add this local perturbation to themodel, theweights between j and its neighbors

( )Î l j aremodified following the rule:

Figure 1. Illustration of the transportation network data sets.We collected four large data sets of transportation networks that include
information about the number of buses or airplanes on each route. The data consist of the inter-city bus transportation networks of
three countries (Brazil, Great Britain, and Spain), andworldwide air transportation network. In the plots, the node area is proportional
to the degree of the node.

3

New J. Phys. 22 (2020) 013043 LGAAlves et al



( )d +w w
w

s
, 2jl jl

jl

j

where δ characterizes the susceptibility of the network to new links and = ås wj k jk is the strength of node j. If
δ<w0, the new link has a small influence on the network. If δ≈w0, the newly created traffic on the new edge is
transferred to existing connections. If δ>w0, the traffic in the new edge generates amultiplicative effect on the
traffic of the neighbors. This process is repeated until the network reaches the desired size. It is worth to note that
this process generates a symmetric adjacencymatrix, i.e.wij=wji, a necessary condition for the nullmodels
we use.

We explore the SDPASSmodel for networkswithN0=5 initial nodes,m=4, and sizeN=100.We
simulate all relevant limiting cases to explore how δ and the ratio η=rc/L affects the scaling of the betweenness
centrality. For convenience, wefixed L=1 to explicitly explore the dependence of themodel on rc. For each set
of parameters, we generated a network using the SDPASSmodel, and, subsequently, we used the appropriated
nullmodels to generate an ensemble of networks to calculate the fraction of anomalous nodes in these networks.

Tomake the identification of centrality anomalies rigorous, we compare the observed values of the pair
(ki, bi) of node i to the distribution of expected values for the randomized ensemble.Wefind that the distribution
of expected values is reasonably approximated by amultivariateGaussian, ( ∣ )m S x ,i i , wheremi represents the
average values of ki and bi for the random ensemble andSi represents the covariancematrix.Wefit a
multivariate Gaussian to the random ensemble data for each node and use it to compute the line enclosing 95%
of the probabilitymass (seemethods for details).

Considering η?1 the effects of distance are negligible [22] andwe recover the non-spatial weighted
networkmodel of Barrat et al [35], which showed no anomalies in our simulations comparedwith an ensemble
of networks generated by theUBCMmodel. As d  0, theweight effects are no longer significant andwe
recover the preferential attachmentmodel [36]. The preferential attachmentmodel does not show any
anomalies in the betweenness centrality, and an ensemble of randomnetworks generated by theUBCMmodel is
able to predict the betweenness centrality of the nodes. For instance, using δ=0.01 and η=10 and comparing

Figure 2. Investigation of centrality anomalies for the unweighted transportation networks. The panels show the comparison of real
data (pink circles)with an ensemble of 10 000 networks (green circles) generated using theUBCMmethod [31]. As expected, for the
randomized networks the betweenness centrality scales approximately with the degree squared. In contrast, for the empirical
networks, the relationship between degree and betweenness ismuch less straightforward as there are some nodes for which the
betweenness dramatically deviates from the scaling relationship.
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this networkwith an ensemble of networks generated by theUBCMmodel we found that only 1%of the nodes
have centrality anomalies.

Another possible scenario is δ=1 and η=1. In this case, the effect of the link’s weights is negligible and
we essentially have a spatial unweighted network topology. In this case, the centrality anomalies are also not
present, and our randomnetworkmodel (UBCM) is able to predict the betweenness centrality of the nodes.
Using δ=0.01 and η=0.01 to generate our network and comparing it with an ensemble of networks that
preserves the degree distribution (UBCM), we found that only 1%of the nodes are anomalous.

Finally, we investigate the interplay betweenweights dynamics, i.e. δ�1, and spatial constraints, η=1. In
these limits, themodel generates spatial weighted networks that have centrality anomalies similar to the ones
observed for transportation networks. For instance, using δ=10 and η=0.01, we found a significant fraction
of nodes (≈69%) that show anomalies in the unweighted projection of the networkwhen compared to the
ensemble of networks produced by theUBCMmodel.

Next, we compare themeasurements for themodel network to the expected values for an ensemble of
randomized networks with the same degree and strength distributions. To this end, we use the undirected
enhanced configurationmodel (UECM) [31, 37], which, consistently with theUBCM, preserves the constraints
on average over the ensemble (i.e. canonical ensemble) [32–34]. In theUECM, edges and their weights are placed
at random following distributions that, on average, preserve both the degree and the strength of the nodes; see
methods. Note that theweightswij in our empirical networks represent the number of buses or airplanes
available for the route connecting i and j.While higher values ofw do reflect stronger ties, a physically
appropriate calculation of the path length requires that one quantifies the length of an edge as the inverse of its
weight [38]. Consistently with the transportation networks, we next consider the inverse of theweights to
compute betweenness centrality of ourmodel network. Infigure 3we show for illustration purposes the
betweenness centrality data for both the unweighted andweighted randomizations. It is visually apparent that
there is a centrality anomaly for one case but not the other.

Using theweighted projection of ourmodel network and comparing it with an ensemble of networks
generated by theUECMmodel, the fraction of centrality anomalies decrease to 18%of the nodes, amuch
smaller fraction than the 69%detected for the unweighted projection. Note that, because our nullmodel does
not include spatial information, our results suggest that amore sophisticatedmodel would be a better choice for
representing this network. The results of ourmodel networks are summarized in table 1.

Weighted transportation networks
To investigate the relevance of the results for networks in the real world systems, we next explore whether
centrality anomalies are also present when considering theweighted representation of the transportation
networks. As before, we compare the relationship between observed betweennesses and degrees to the
relationship obtained for an ensemble of 10 000 randomized networks generated using theUECM (figure 4). By
doing so, we observe two results. First, even for the randomized networks, there no longer exists a simple scaling
relationship between betweenness and degree. Second, we no longer find systematic centrality anomalies in the

Figure 3. Illustration of centrality anomalies identification in complex networks. The red dot indicates the observed centrality and
degree empirical network and the orange (blue) dots are the corresponding betweenness centrality versus degree for the 10 000
networks from the ensemble sampled using theUBCM (UECM)method. The solid black line encloses 95%of the probabilitymas for
amultivariate Gaussian fit to the data. In the unweighted network, the observed values of betweenness centrality and degree lie outside
the 95%bounds of themultivariate Gaussian adjusted to the data predicted by the synthetically generated networks. In contrast, in the
weighted network, an anomaly is no longer observed.
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data. Remarkably, only a handful of cities—Brasilia,Madrid, andBarcelona—appear to have a centrality
anomaly and none of the nodes with lowdegree appears to have such anomalies. On the other hand, by plotting
betweenness versus strength (figure 5), we uncover a simpler relationship, indicating that the strengthwould be a
more informativemeasure of the nodes.

We now calculate the fraction of nodes forwhichwe can reject the null hypothesis of no centrality anomaly
(figure 6). The expectation here is that wewill observe a false discovery rate of 5%. For 3 of the 4 unweighted
transportation networks, we find an excess of nodes with centrality anomalies, whereas for none of theweighted
networkswe find such an excess. These results suggest that the existence of centrality anomalies when
considering unweighted networks is a result of the neglected (but functionally crucial) role of edgeweight on the
evolution and performance of these networks.

Figure 4. Investigation of centrality anomalies for theweighted transportation networks. The panels shows the comparison of real
data (pink circles)with an ensemble of 10 000 networks (green circles) generated using theUECMmethod [31]. Notice that there no
longer exists a simple scaling relationship between betweenness and degree.

Table 1.Anomalies in the SDPASSmodel. The first two columns show
the parameters used on a simulation of networks consideringN0=5
initial nodes,m=4, and sizeN=100. The third column (unweighted
network) and fourth column (weighted network) show the percentage of
anomalous nodes in these networkswhen comparedwith an ensemble of
networks generated by theUBCMandUECMmodels, respectively. The
last column indicates the topology characteristics of the networks given
the parameters δ and η.

δ η UBCM UECM Topology

0.01 10 1% 1% Non-spatial unweighted

10 10 1% 1% Non-spatial weighted

0.01 0.01 1% 1% Spatial unweighted

10 0.01 69% 18% Spatial weighted

6

New J. Phys. 22 (2020) 013043 LGAAlves et al



Figure 5. Investigation of betweenness centrality as a function of the strength. The pink circles showobserved values, whereas the
green circles show results for an ensemble of 10 000 networks generated using theUECMmethod [31]. The dashed black line is an
average over the ensemble data. The average trend suggests that the strength is amore informativemeasure of the nodes than degree.

Figure 6.Quantifying the fraction of anomalous nodes. For each network, we compute the fraction of nodes that lie outside the 95%
bounds of themodel. The anomaly in betweenness centrality is verified for all unweighted transportation networks (except forGreat
Britain). In contrast, for theweighted version, the fraction of anomalous nodes is of the order of the false discovery rate, i.e.
approximately 5%.
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Conclusions

Thefindings reported here suggest that centrality anomalies present in the unweighted representation of
transportation networks aremasking the fact that some edges carrymuch larger weights than the typical edge in
the network. Because of the role of spatial, temporal, and capacity constraints in real transportation networks, it
is natural to expect that the degree of individual nodes cannot grow unbound, and that edgeweight is a way to
account for large demand. Indeed, wefind that for randomnetworks with the same degree and strength
distributions the centrality structure of the network becomes indistinguishable from the observed structure.

We further extend our results to a broader class ofmodel networks using the SDPASSmodel. Specifically, we
show that whenweights and spatial constraints are relevant, the centrality anomalies arise in the unweighted
network projection and they cannot be predicted using a simplemodel that takes into account only the degree
sequence as a constraint. On the other hand, when degree and strength sequences are used as a constraint for the
nullmodel, the ensemble can reproduce the betweenness centrality observed in the data, suggesting that, in the
case of spatial weighted networks,more sophisticated networkmodels are better choices for representing the
system.

Our findings demonstrate that the desire to use the simplest network representations of a system carries
important risks. Typically, researchers fall back onmodels that ignore connection directionality andweight.
While this choicemay be good enough inmany cases, in others it could bemasking important characteristics of
the system.Our study shows that the presence of centrality anomalies can be an indicator that important aspects
of the system are being lost in its network representation.We believe that complex systems that have nodes and
edges embedded in a physical space such as spatial networks (e.g. road networks, power grids, and neural
networks), might show centralities anomalies when projected onto unweighted networks. Further investigation
of these systems could extend the generality of our findings to other real-world systems.

Methods

Data.Weobtained data from the Brazilian inter-city bus routes for the period between January 2005 and
December 2014 at amonthly time-resolution. These data aremaintained and distributed by the Brazilian
National LandTransportationAgency [39]. The data containsmore than 19 thousand unique routes connecting
1786 cities.We gathered the geographical location of all relevant cities from the Brazilian Institute of Geography
and Statistics (IBGE) [40].

We obtained data from the British inter-city bus routes for the period between 4October, 2010 and 10
October, 2010, at an hourly resolution. These data aremaintained by theNational Public Transport Data
Repository and distributed by theDepartment of Transport and licensed under theOpenGovernment Licence.
This data set was complementedwith theNational Coach Services Data distributed also by theDepartment of
Transport and licensed under theOpenGovernment Licence [41]. The total number of nodes after the
aggregation intomunicipalities is 279 comprising almost 4 thousand unique routes.

We obtained data from the Spanish inter-city bus routes for the period between 1 January, 2017 and 31
December, 2017, at an hourly resolution. These data aremaintained and distributed by the SpainMinistry of
Development [42]. The data is provided as the set of routes connecting each pair ofmunicipalities in Spain
except for the province ofGirona. The total number of nodes is 1435with over 20 thousand unique routes.

The data of theworldwide air transportation networkwere collected in the period between 17May, 2018 and
22May, 2018, at an hourly resolution. These data aremaintained by thewebsite Flight Aware [43]. The data
contain allflights in 2734 airports around theworld, withmore than 16 thousand unique routes. The
geographical location of the airports was obtained from theOpen Flights website [44].

Sampling of networks. To investigate the statistical properties of transportation networks we have generated
10 000 networks sampled from the ensembles for each data set and topology (non-weighted orweighted).We
followed the approach proposed by Squartini et al [31, 33] of unbiased sampling based onmaximum-entropy
distributions. In this approach, the probability distributions composing the ensemble are obtained by
maximizing, in sequence, the Shannon’s entropy and the likelihood function subject to the desired constraints.
In particular, for the non-weighted networks casewe used the ‘UBCM’, where the constraint is the degree
sequence { }=ki i

N
1. Notice that the constraints in the canonical ensemble aremet on average over the network

samples, differently from themicrocanonical ensemble, i.e.MarkovChainMonte Carlo edge switching approach,
where the constraints are satisfied exactly [32–34].With theUBCMmodel the probability of having a link
between nodes i and j, pij is given by
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where ki(A) is the observed degree of node i and á ñki is the ensemble average. Once the values of the pij have been
determined, we can extract a sample graph from the ensemble by running a Bernoulli trial for each pair of
vertices to connect i and jwith probability pij (aij=1) and not connect with probability 1−pij (aij=0).
Repeating this last step, we can generate any desired number of networks that, on average, have the same degree
sequence as the observed one. Figure 7 shows a good agreement between the average degree versus the
empirical ones.

Similarly, for theweighted networkwe have considered the ‘UECM’, where the constraints are the degree
and strength sequences. Again, the constraints aremet on average over the network samples (i.e. canonical
ensemble). In this case, the probability pij is given by

( )º
- +

p
x x y y

y y x x y y1
6ij

i j i j

i j i j i j

Figure 7. Samples of networks using the undirected binary configurationmodel (UBCM) given their degree sequence. In each plot,
the green dots show themeasured degree k̄i in each sample versus the degree ki in the observed network. The pink squared-dots
represents the average degree á ñki over the 10 000 networks of the ensemble versus the empirical degree ki. The dashed line is a straight
linewith slope 1. (a)Brazilian buses transportation network, (b)British buses transportation network, (c) Spanish buses transportation
network, and (d)worldwide air transportation network.
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and the x and y vectors can be computed, again, by eithermaximizing the log-likelihood
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whereW represents in this case the adjacencymatrix of theweighted graph, or by solving the 2N equations
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where ki(W) and si(W) are, respectively, the observed degree and strength of node i and á ñki and á ñsi are the
ensemble averages.

Thus, solving the above equations, the probabilities of generating a link of weightw between any pair of
nodes i and j is given by
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Figures 8 and 9 show, respectively, the average degree and strength over the ensemble generated by the
UBCMmethod compared to the empirical observations.

Detecting anomalies.Todetect the anomaly in betweenness centrality versus degree, we have calculated
these quantities for each node over a 10 000 ensemble of synthetic networks considering the appropriate null
models. For every node, we approximated the distribution of k and b by amultivariate Gaussian distribution and
computed the fraction of nodes that lie outside the 95% confidence interval for the nullmodel.

Figure 8. Samples of networks using undirected enhanced configurationmodel (UECM) given their degree and strength sequences. In
each plot, the green dots show themeasured degree k̄i in each sample versus the degree ki in the observed network. The pink squared-
dots represents the average degree á ñki over the 10 000 networks of the ensemble versus the empirical degree ki. The dashed line is a
straight linewith slope 1. (a)Brazilian buses transportation network, (b)British buses transportation network, (c) Spanish buses
transportation network, and (d)worldwide air transportation network.
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Multivariate Gaussianfitting. For each node, we approximated the joint distribution of betweenness
centrality and degree (or strength) by amultivariateGaussian, that is

( )
( { })

( ) (

( ) ∣ ∣
( )m

m m

p
S

S

S
=

- - --

 x
x x

, ,
exp

2
, 11

1

2
T 1

2

where x=(k, b)T,

⎜ ⎟
⎛
⎝

⎞
⎠ ( )m

m
m= , 12k

b

is themean, and

( ) ( )r
s s
s sS = , 13kk kb

kb bb

is the covariancematrix, where ρ is the correlation between k and b. Thus, the line enclosing 95%of the
probabilitymass for the nullmodel is a ellipsoid (under a rotated coordinate system)with radii given by the
eigenvalues l1 and l2 of the scaled covariancematrix Ss , where ( )= - -s p2 log 1 and p is the confidence
probability that the null hypothesis is true.
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Figure 9. Samples of networks using undirected enhanced configurationmodel (UECM) given their degree and strength sequences. In
each plot, the green dots show themeasured strength s̄i in each sample versus the strength si in the observed network. The pink
squared-dots represents the average strength á ñsi over the 10 000 networks of the ensemble versus the empirical strength si. The dashed
line is a straight linewith slope 1. (a)Brazilian buses transportation network, (b)British buses transportation network, (c) Spanish
buses transportation network, and (d)worldwide air transportation network.
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