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Cooperation is the backbone of modern human societies, making it a
priority to understand how successful cooperation-sustaining mechanisms
operate. Cyclic dominance, a non-transitive set-up comprising at least
three strategies wherein the first strategy overrules the second, which over-
rules the third, which, in turn, overrules the first strategy, is known to
maintain biodiversity, drive competition between bacterial strains, and pre-
serve cooperation in social dilemmas. Here, we present a novel route to
cyclic dominance in voluntary social dilemmas by adding to the traditional
mix of cooperators, defectors and loners, a fourth player type, risk-averse
hedgers, who enact tit-for-tat upon paying a hedging cost to avoid being
exploited. When this cost is sufficiently small, cooperators, defectors and
hedgers enter a loop of cyclic dominance that preserves cooperation even
under the most adverse conditions. By contrast, when the hedging cost is
large, hedgers disappear, consequently reverting to the traditional interplay
of cooperators, defectors, and loners. In the interim region of hedging costs,
complex evolutionary dynamics ensues, prompting transitions between
states with two, three or four competing strategies. Our results thus
reveal that voluntary participation is but one pathway to sustained
cooperation via cyclic dominance.
1. Introduction
Large-scale cooperation is a basis for solving key societal problems including
climate inaction [1,2], resource overexploitation [3–5], imperfect vaccination
[6–9], antibiotic overuse [10], crime occurrence [11], and epidemic outbreaks
[12,13]. Cooperativeness as an altruistic act [14] entails a cost for the actor in
order for the recipient to enjoy a benefit. Cooperators are, therefore, fundamen-
tally challenged by the most basic principles of Darwinian evolution, i.e. why
should anyone act selflessly if only the fittest succeed? This puzzle has mobi-
lized an unprecedented spectrum of researchers across disciplines to seek out
mechanisms that sustain and/or promote cooperation [14–21].
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Table 1. Bilateral pay-off matrix in the basic prisoner’s dilemma game. A
way to interpret this matrix is to assume that the pay-off in a particular
row and column is earned when a strategy in the first row is met with a
strategy in the first column. Thus, pay-off S is earned by a cooperator C
meeting a defector D. The pay-off order is T> R> P> S to encourage
defection and discourage cooperation. Also, 2R> T+ S makes mutual
cooperation (2R) more beneficial for the collective than defecting against a
cooperator (T+ S).
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Social dilemmas, a construct of evolutionary game theory
[22–24], capture the essence of the cooperation puzzle by
contrasting individual and collective interests [25–28]. An
important subclass of social dilemmas is the voluntary social
dilemma [29,30], in which loners shape the evolutionary
dynamics alongside traditional cooperators and defectors.
Loners are risk averse, and to avoid getting exploited they
resort to an exceedingly simple strategy that generates a
small fixed income regardless of what their opponents do.
This prompts the emergence of cyclic dominance, whereby
cooperators dominate loners, who dominate defectors, who
dominate cooperators, thus sustaining cooperation while strat-
egy abundances keep oscillating [31]. Cyclic dominance
emerges elsewhere too, e.g. in the public goods game with
correlated punishment and reward [32], in the ultimatum
game with discrete strategies [33], in social dilemmas with
jokers [34], and by means of coevolution [35,36].

Cyclic dominance is often employed to study biodiversity
[37–45] and competition in microbial populations [40,46,47].
The subject of cyclic dominance is reviewed in detail in
[44]. Interestingly, when finite-size effects are taken into
account, cyclic dominance may fail to sustain biodiversity
and may even be responsible for extinction [48]. Further
results indicate that competition is key for sustaining biodi-
versity whilst ecosystem-wide patterns form by means of
cyclical interactions [49]. Dynamically generated cyclic dom-
inance, apart from sustaining biodiversity, offers alternative
ways to sustain cooperators even in the face of large tempta-
tion to defect [50]. Considering more than three species in
ecosystems, the existence of a phase with global oscillations,
especially if the interaction graph contains multiple subloops
and local cycles, prompts the conjecture that global oscil-
lations are a general characteristic of realistic food webs
[51]. Meanwhile, considering more than three strategies in
evolutionary games shows that cyclic dominance emerges
as an unexpected escape route from the adverse effects of anti-
social punishment, also providing an explanation as to why
second-order free-riding may not impede the evolutionary
stability of punishment [52]. Here, we considerably expand
the scope of cyclic dominance in the generic and broadly
adaptable setting of the voluntary social dilemma. Motivated
by the ubiquity of risk aversion in the real world, we intro-
duce a fourth player type, hedgers, who are also risk averse,
but in a more sophisticated and productive way than loners.
Instead of avoiding meaningful interaction altogether,
hedgers are willing to pay a hedging cost that allows them
to learn the strategy of their opponents and thus avoid getting
exploited. Specifically, a hedger enacts tit-for-tat play, but
without cooperation in the first move [53–55]. If the opponent
defects, the hedger also defects, whereas if the opponent
cooperates, the hedger also cooperates.

In the described setting, hedgers may replace loners in a
closed loop of dominance such that defectors invade coopera-
tors, but cooperators invade hedgers, and hedgers invade
defectors. We thus report a novel route to cyclic dominance
in the voluntary social dilemma made possible by risk aver-
sion. Strategy abundances again oscillate in time, but
oscillations are now induced by more elaborate and pro-
ductive means than the simplistic loner strategy [31]. This is
possible when the cost of hedging is sufficiently low. When
the cost of hedging gets high, loners dominate hedgers, and
we recover the original voluntary dilemma. For intermediate
hedging costs, other solutions are also stable, including a
four-strategy state in which all competing strategies coexist,
or a two-strategy state in which cooperators and defectors
coexist as is common in spatial prisoner’s dilemmas [56].

We hereafter proceed by detailing the mathematical model,
describing the main results, and discussing their broader
implications. We envision more direct applications to complex
social systems, yet adaptations to biological systems also seem
plausible.
2. Mathematical model
Our model is a variant of the prisoner’s dilemma game (PDG)
extended to incorporate loners and hedgers. In a common
PDG [53], mutual cooperation is rewarded by the reward
pay-off, R, whereas mutual defection is punished by the pun-
ishment pay-off, P. Furthermore, defection is encouraged by
the largest pay-off, temptation T, while cooperation is dis-
couraged by the lowest sucker’s pay-off, S. This is because
of the pay-off ranking T>R>P>S, and the fact that T is
earned by a defector upon meeting a cooperator who then
earns S. In the repeated version of the game, it is additionally
assumed that 2R>T+S [57]. The corresponding bilateral pay-
off matrix is given in table 1. Although the game seems to be
defined by four pay-offs, there is a well-known rescaling to
two parameters that leaves the evolutionary dynamics unaf-
fected [26]. For even more simplicity, studies often resort to
the weak PDG [56], in which only one parameter, T= b, con-
trols how strong the dilemma is in the sense that the larger
the value of b, the stronger is the temptation to defect. The
other pay-offs are simplified to R= 1 and P=S= 0.

We extended the weak PDG to include loners and
hedgers. A loner avoids complications by always earning a
small pay-off, σ≪ b, which is also earned by anyone who
meets the loner. A hedger, by contrast, is much more sophis-
ticated. Because of the hedger’s risk aversion, they pay a
hedging cost, α, to learn the opponent’s strategy, and then
enact tit-for-tat play by cooperating with a cooperator or
defecting against a defector. With the pay-offs of all four
strategies defined (table 2), it is worthwhile briefly examining
implications for the evolutionary dynamics.

Focusing momentarily on the CDL combination of players
[29,30], we see that, in the absence of cooperators, loners
receive the same or larger pay-off than defectors, giving the
former strategy a decisive evolutionary advantage over the
latter. The situation is similar for defectors against coopera-
tors in the absence of loners, and for cooperators against
loners in the absence of defectors. Based on these



Table 2. Bilateral pay-off matrix of the four-strategy model. As in table 1,
the pay-off in a particular row and column is earned when a strategy in
the first row is met with a strategy in the first column. For example, pay-
off b is earned by a defector D meeting a cooperator C, whereas pay-off σ
is earned by a hedger H meeting a loner L.

C D L H

C 1 0 σ 1

D b 0 σ 0

L σ σ σ σ

H 1− α −α σ 1− α
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observations, it is a fair guess even before running any simu-
lations that cyclic dominance may emerge, especially when
the game is embedded into a spatial structure.

For the CDH combination of players, the set-up is some-
what different. The relation between cooperators and
defectors in the absence of hedgers remains unchanged, of
course, and the relation between cooperators and hedgers
mimics that of cooperators and loners because, in the absence
of defectors, it is cooperators who always attain a larger
pay-off. The relation between defectors and hedgers is com-
plicated by the fact that, in the absence of cooperators,
either strategy may earn more depending on who interacts
with whom and what the exact value of hedging cost α
is. Nonetheless, when the cost is small and hedgers suffi-
ciently abundant, they should be able to overcome
defection, possibly giving rise to cyclic dominance once
again. We examined this supposition using Monte Carlo
simulations [57,58] as well as the pair approximation tech-
nique [57,59] (electronic supplementary material). Monte
Carlo simulations of evolutionary games are an individual-
based approach in which the actions of each individual are
implemented explicitly to generate a pay-off that is then
compared with the pay-offs of other individuals, followed
by imitation of those who performed better. Simulations
are typically run until the system reaches a stable state as
indicated by an order parameter, e.g. the fraction of coopera-
tors. The pair approximation method provides alternative
means of tracking the system’s state. Specifically, by focusing
on the frequencies and the proportions of strategy pairs, the
method yields a set of differential equations that should
implicitly encode the behaviours that are explicit in Monte
Carlo simulations. As such, pair approximation can be used
to verify the results of Monte Carlo simulations or offer a
different perspective on particular outcomes.

For the purpose of Monte Carlo simulations, we arranged a
total of N=L2 agents to form a square lattice of length
L with periodic boundary conditions. Each agent is character-
ized by a strategy vector, Sx ¼ (pCx , p

D
x , p

L
x , p

H
x )

T , where p�x is
the probability with which agent x behaves as a cooperator,
defector, loner, or hedger. A direct consequence is that
pCx þ pDx þ pLx þ pHx ¼ 1. We additionally imposed that exactly
one p�x equals unity, meaning that the only four possible
strategy vectors for agent x are Sx= (1, 0, 0, 0)T≡C, Sx= (0, 1,
0, 0)T≡D, Sx= (0, 0, 1, 0)T≡L, and Sx= (0, 0, 0, 1)T≡H. Then
the pay-off earned by this agent in a single round of the game is

Px ¼
X

y[Nx

SxTMSy, (2:1)
where Nx is the set of agent x’s neighbours, M is the matrix
of elementary pay-offs as displayed in table 2, and Sy is the
strategy vector of x’s neighbour y. Depending on the earned
pay-offs, agents update their strategies using the Fermi rule
[57,58], which ensures that poorer performing players even-
tually adopt the strategies of their better performing
counterparts. Specifically, agent x imitates the strategy of a
randomly chosen neighbour y∈Nx with probability

WSx Sy ¼
1

1þ exp ((Px � Py)=K)
, (2:2)

whereK quantifies the irrationality of selection, i.e. the larger the
K is, the greater the probability that agent x imitates agent y even
if Px>Py.

To run simulations from this point on, we only needed to
specify parameter values. The pay-off parameter whose value
was held constant throughout this study is σ=0.3. To uphold
constraint 2R>T+ S, we examined temptation pay-offs in the
range 1≤ b≤ 2; b= 2 thus signifies the strongest dilemma. Fur-
thermore, we presented the results for hedging costs in the
range 0≤ α≤ 0.4 because there are no qualitative changes in
the system’s behaviour for α>0.4. The lattice size systemati-
cally varied in the range 200≤L≤ 1500 to make sure that
the results are not due to the finite size effects. The closed
neighbourhood was von Neumann’s [58] throughout the
study. Relative to an arbitrarily selected focal agent, such a
neighbourhood includes the closest ’north’, ’east’, ’south’
and ’west’ agents, implying a constant node degree of k=4.
Finally, the irrationality of the selection parameter was kept
constant at K=0.1. We ran each simulation over 50 000 time
steps to guarantee that the transient dynamics had passed.
3. Results
Simulations reveal that hedgers are able to support
cooperation via cyclic dominance. When the hedging cost is
sufficiently low, hedgers outlive loners and remain abundant
over the whole range of temptation pay-offs (figure 1a). In
doing so, hedgers enter into a loop of cyclic dominance
with cooperators and defectors, helping the former to avoid
being overrun by the latter. How this transpires is more
clearly seen in the snapshots of evolutionary dynamics in
which defectors invade cooperators, who invade hedgers,
who invade loners early on (second column in figure 2).
Afterwards, however, hedgers maintain their presence by
paying little cost while denying defectors the temptation
pay-off and enjoying the reward pay-off with cooperators
(top row in figure 2). Under such conditions, loners are the
least competitive player type whose eventual disappearance
marks the beginning of cyclic dominance between coopera-
tors, defectors, and hedgers. That these player types indeed
cyclically dominate one another is reflected in the irregular
mixing pattern of agents post transient evolutionary
dynamics (fifth column in figure 2).

Loners start replacing hedgers as the hedging cost
increases. This first happens for small (figure 1b) and then
all (figure 1c) values of the temptation pay-off. Despite
losing the support from hedgers, cooperators do not succumb
to defectors because it is now loners who enter the loop of
cyclic dominance. The snapshots of evolutionary dynamics
illustrate this turn of events. As hedgers become overbur-
dened by their risk-averse strategy due to the high hedging
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Figure 1. Hedgers and loners interchangeably support cooperation via cyclic dominance. (a) When hedging costs are low, α= 0.05, hedgers are more competitive
than loners and manage to support cooperation via cyclic dominance over the full range of temptation pay-offs. (b) When hedging costs are intermediate, α= 0.22,
hedgers are more competitive than loners only over a limited range of temptation pay-offs. Cooperation is, nonetheless, supported via cyclic dominance as loners
assume an analogous role to hedgers while the temptation pay-off stays relatively low. (c) With high hedging costs, α= 0.4, hedgers are no longer competitive at
all. Cooperation is then maintained via cyclic dominance solely by loners. Simulation and pair-approximation results differ quantitatively, but they tell the same
story qualitatively.
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Figure 2. Hedging costs shape the fate of hedgers. Shown are the snapshots of evolutionary dynamics at different time steps (columns) and for different hedging
costs (rows). Early in the evolutionary dynamics, defectors invade cooperators, who invade hedgers, who invade loners. Later, however, it is hedging costs that
determine the fate of hedgers. When these costs are low (top row), hedgers pay little for denying defectors the temptation pay-off, as well as enjoying the reward
pay-off together with cooperators. All this helps hedgers to outlive loners, who eventually disappear. When hedging costs are high (bottom row), risk aversion is a
burden that cannot be offset by the reward pay-off. Hedgers eventually disappear. Finally, when hedging costs are intermediate (middle row), there is a balance of
power of sorts between hedgers and loners, and all four strategies survive. The irregular mixing of strategies after transient evolutionary dynamics is a signature of
cyclic dominance.
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cost, they become the least competitive player type and even-
tually die out (bottom row in figure 2). The recognizable
irregular mixing pattern of agents engaged in cyclic domi-
nance resurfaces again after transient evolutionary
dynamics, but now with loners having taken the place of
hedgers. Interestingly, although hedgers and loners almost
entirely exclude one another, there is a narrow window of
hedging costs and temptation pay-offs in which these two
player types coexist alongside cooperators and defectors
(middle row in figure 2).

To have a glimpse into the heart of cyclic dominance, we
estimated invasion rates post transient evolutionary
dynamics. If strategy Sx had been invaded by strategy Sy,
we defined the corresponding invasion rate, wSx Sy . 0, as
the net positive fraction of transitions from strategy Sx to
strategy Sy, mediated by the Fermi rule in a single Monte
Carlo time step. With four player types, six invasions had
been possible. These happened to be wC←D, wL←C, wH←C,
wD←L, wD←H, and wL←H.

Invasion rates clearly demonstrate cyclic dominance in
action. For an intermediate temptation pay-off, b=1.5, and
relatively low hedging costs, cooperators, defectors, and
hedgers get locked in a cyclic dominance loop as evidenced
by the equality of invasion rates wC←D=wD←H=wH←C
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Figure 3. Average invasion rates reveal cyclic dominance in action. (a) Fixing
the temptation pay-off to b= 1.5, we plotted average invasion rates as the
functions of hedging costs, α. For small α values, cyclic dominance between
cooperators, defectors, and hedgers (light-blue area) is reflected in the fact
that defectors invade cooperators, who invade hedgers, who invade defectors
all with the same average invasion rate. For large α values, the situation is
analogous, except that loners take the place of hedgers (light-red area). For a
narrow window of intermediate α values, the two cyclic dominance loops
intermix, with hedgers actually invading loners with a small invasion rate
(wL←H) that is more than compensated for by loners invading defectors
(wD←L> wL←H), which enables all four strategies to coexist. (b) Similar
results are obtained by fixing the hedging cost to an intermediate value
of α= 0.22, and then varying the temptation benefit. Here, cyclic dominance
with loners emerges for small b values (light-red area), whereas cyclic
dominance with hedgers emerges for large b values (light-blue area).
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Figure 4. Hedgers and loners protect cooperators even in the harshest of
conditions. Shown is the time evolution of strategies such that, initially,
there is a one giant cluster of cooperators (red) surrounded by defectors
(blue), and two smaller clusters of cooperators separated from defectors
by a thin layer of hedgers (green) in one case and loners (grey) in the
other. The temptation pay-off, b= 2.0, is at the maximum of the prisoner’s
dilemma limits. The hedging cost of α= 0.26 is intermediate. Under such
conditions, the giant cooperative cluster quickly erodes under exploitation
by defectors. Smaller cooperative clusters, by contrast, turn into mixes of
cooperators, defectors, and loners or hedgers, that spread like ripples
across a lattice; here, of size L= 500.
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(figure 3a). All invasion rates involving loners equal zero
because players of this type get outcompeted. As hedging
costs increase, the fortunes of hedgers and loners reverse,
and now the latter get locked in the cyclic dominance
loop with cooperators and defectors as indicated by equal-
ities wC←D=wD←L=wL←C (figure 3a). All invasion rates
involving hedgers equal zero because hedgers get outcom-
peted, just as loners did in the opposite situation. All four
player types coexists only over a narrow window of inter-
mediate hedging costs. Here, cooperators are drained in
favour of defectors, but replenished at the expense of hedgers
and loners, i.e. wC←D=wH←C+wL←C. Defectors are drained in
favour of hedgers and loners, but replenished at the expense
of cooperators, i.e. wD←H+wD←L=wC←D. Loners are drained
in favour of hedgers and cooperators, but replenished at the
expense of defectors, i.e. wL←H+wL←C=wD←L. Finally,
hedgers are drained in favour of cooperators, but replenished
at the expense of defectors and loners, i.e. wH←C=wD←H+
wL←H. Completely analogous results hold when the hedging
cost is intermediate, α=0.22, and the temptation pay-off
increases in the range 1≤ b≤ 2 (figure 3b).

Cyclic dominance emerges rather independently of the
initial conditions and even in the face of the strongest
dilemma, b= 2.0. To demonstrate this, we present simulations
of the evolutionary dynamics starting from one large cluster
of cooperators surrounded entirely by defectors, and two
small clusters of cooperators, but separated from defectors
by a thin layer of hedgers in one case and loners in the
other (figure 4). Setting the hedging cost to an intermediate
value, α=0.32, we find that defectors quickly chip away at
the large cooperative cluster, while smaller cooperative clus-
ters turn into a mix of cooperators, defectors, and hedgers
or loners, and spread in a ripple-like manner through the lat-
tice, until cyclic dominance becomes omnipresent (figure 4).

To fully understand evolutionary dynamics as a function of
the temptation pay-off and the hedging cost, we mapped
the system’s phase space. We found four distinct phases:
cooperators and defectors only (C+D), cooperators–defectors–
hedgers (C+D+H), cooperators–defectors–loners (C+D+L),
and all four player types (C+D+L+H). When the temptation
benefit is very small, the dilemma is minimal and the system
evolves to the C+D phase irrespective of the hedging cost
(figure 5a). As the temptation pay-off increases, it is the hedging
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Figure 5. Cyclic dominance is a widespread phenomenon. Shown are the
phase diagrams due to Monte Carlo simulations and the pair approximation,
revealing the model’s dynamical regimes as a function of the hedging cost
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domains where the system converges to limit cycles by which the abundances
of surviving player types oscillate in time (figure 6).
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cost that largely determines how the system evolves. For rela-
tively small hedging costs the C+D+H phase is prevalent,
whereas for relatively large hedging costs the C+D+L
phase is prevalent (figure 5a). There is only a narrow window
of intermediate hedging costs in which the system evolves
to the C+D+L+H phase (figure 5a), showing again that
hedgers and loners almost interchangeablysupport cooperation
through cyclic dominance. The pair approximation yields a
qualitatively similar phase diagram, despite some obvious
quantitative differences relative to Monte Carlo simulations
(figure 5b).

It is not entirely equivalent whether cyclic dominance is
established by hedgers or loners. Namely, in the spatial
voluntary dilemma, cyclic dominance gives rise to oscillating
strategy abundances everywhere on the b–α phase diagram,
but without spatial structure only cyclic dominance involving
hedgers can do so indefinitely. Fixing the temptation pay-off
to b= 2.0 and choosing a low hedging cost of α=0.02 places
the system in the C+D+H phase such that the pair
approximation generates an open cycle trajectory that con-
verges to a planar limit cycle (figure 6a). The limit cycle is
planar because loners die out and the sum of strategy abun-
dances for the remaining three player types is constrained
to unity. Increasing the cost of hedging to a higher value of
α=0.32 sets the system into the C+D+ L+H phase in
which evolutionary dynamics converges to a three-dimen-
sional limit cycle (figure 6b) because now all four player
types coexist, but their abundances are still constrained to
unity. Finally, with a high hedging cost of α=0.4, the
system is pushed into the C+D+L phase, where the pair
approximation yields a trajectory with small open cycles
that disappear as the system converges to a stable equilibrium
with zero hedgers (figure 6c). A degree of cooperation is still
maintained in such an equilibrium, but cyclic dominance as
the underlying cause stays masked by the static outcome of
evolutionary dynamics.

4. Discussion
Herein, we revealed a novel route to cyclic dominance in
voluntary social dilemmas brought about by risk-averse
players called hedgers. These players outwit defectors by
paying a hedging cost to avoid getting exploited. In the pres-
ence of cooperators, however, risk aversion is redundant
and thus a burden that hampers performance. Hedgers
accordingly invade defectors, defectors—as usual in social
dilemmas—invade cooperators, and cooperators invade
hedgers to close the loop of cyclic dominance. This effectively
sustains cooperation even under adverse conditions, when
the temptation to defect is high. Moreover, this shows that
cooperativeness by way of cyclic dominance can emerge
due to more elaborate and productive means than the
exceedingly simple loner strategy.

Hedgers may superficially resemble a simple hybrid of
cooperators and defectors, yet as risk-averse conditional coop-
erators they are much more. Plain conditional cooperators,
because of their relationship to the tit-for-tat strategy [60],
have played a central role in the studies on the evolution of
cooperation [61–63]. Adding to this the fact that risk aversion
is ubiquitous in real life [64], the importance of considering
risk-averse conditional cooperators can hardly be overstated.

Our research has important implications for promoting
and sustaining cooperation in human societies. An increasing
realism via higher strategic complexity [65–67] is necessarily
accompanied by an increasing complexity of evolutionary
outcomes as they become dependent not just on individual
strategic relations prescribed by pay-off elements, but also
on dynamical relations and spontaneously emerging alliances
between strategy subsets [44]. Cyclic dominance with
hedgers is one such example, but we expect to see many
more in the near future. This, in turn, predicts considerable
challenges in steering complex social systems towards a
desired cooperative state. Simple interventions, as frequently
enacted by decision makers, often turn out to be naive and
risky propositions precisely because of a limited understand-
ing of the underlying spatio-temporal dynamics that govern
social complexity. Relevant examples include producing
and appointing inadequately trained personnel [68], flawed
models and agency costs associated with those models [69],
misunderstanding or ignoring systemic risks [70], etc.

Aside from applications to social dynamics, it is possible
to envision analogous, if more complicated, set-ups in
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Figure 6. Exceeding simplicity of the loner strategy is manifest in the absence of an explicit spatial structure. Specifically, when approximating the system using pair
approximation, hedgers can still maintain cyclic dominance such that strategy abundances oscillate in time, but loners cannot. (a) With low hedging costs, α= 0.02,
and a sufficiently large temptation pay-off, b= 2.0, loners quickly disappear as the system converges to a planar limit cycle with positive cooperator, defector, and
hedger abundances. The limit cycle is planar because the three strategy abundances must sum to unity. (b) When the hedging cost increases to α= 0.32, all four
strategies coexist and the system converges to a three-dimensional limit cycle. The limit cycle is three dimensional because strategy abundances must again sum to
unity. (c) With high hedging costs, α= 0.40, it is hedgers, and with them oscillations in strategy abundances, who quickly disappear. The system thus approaches a
stable equilibrium of cooperator, defector and loner strategies. The colour bar indicates time steps.
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biological systems as well. Living tissues are genetically iden-
tical cell structures of the same differentiation fate that work
cooperatively to support homeostasis [71]. Such cooperative
cell structures are susceptible to cheating [71], i.e. individual
cells occasionally defect and turn malignant by either
increasing their own fitness or decreasing the fitness of the
surrounding cells [72–74]. The system is, furthermore, policed
by free-ranging immune cells that scan for malignant activity
[75,76] and actively punish defectors at a cost [77,78], while
receiving compensation for that cost through interactions
with cooperative cells. In this sense, cooperative cells would
not ‘invade’, but rather ‘modulate’, the activity of immune
cells, yet the resulting dynamics should still resemble cyclic
dominance. Understanding such dynamics by, for example,
mapping the system’s phase space could help to devise
novel treatments for controlling malignant activity [76,79].

While there is a potential for widespread uses, we hope
that our research will, at the very least, lead to better under-
standing of cooperation in social dilemmas. In this context, a
particularly promising way forward is to pair up theoretical
treatises of evolutionary game dynamics with laboratory
[80,81] and even field experiments. Doing so should put the
theory to the test, help to identify more solid fundamentals
on which to build and overall strongly aid the quest for a
better and more sustainable future.
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