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ABSTRACT

The understanding of cooperative behavior in social systems has been the subject of intense research over the past few decades. In this regard,
the theoretical models used to explain cooperation in human societies have been complemented with a growing interest in experimental
studies to validate the proposed mechanisms. In this work, we rely on previous experimental findings to build a theoretical model based on
two cooperation driving mechanisms: second-order reputation and memory. Specifically, taking the donation game as a starting point, the
agents are distributed among three strategies, namely, unconditional cooperators, unconditional defectors, and discriminators, where the
latter follow a second-order assessment rule: shunning, stern judging, image scoring, or simple standing. A discriminator will cooperate if the
evaluation of the recipient’s last actions contained in his memory is above a threshold of (in)tolerance. In addition to the dynamics inherent to
the game, another imitation dynamics, involving much longer times (generations), is introduced. The model is approached through a mean-
field approximation that predicts the macroscopic behavior observed in Monte Carlo simulations. We found that, while in most second-order
assessment rules, intolerance hinders cooperation, it has the opposite (positive) effect under the simple standing rule. Furthermore, we show
that, when considering memory, the stern judging rule shows the lowest values of cooperation, while stricter rules show higher cooperation
levels.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009758

. INTRODUCTION

The presence of cooperative behavior among unrelated indi-
viduals remains an open question in the scientific community, con-
stituting one of the current key scientific challenges.' The evolution-
ary game theory”’ provides a powerful framework to study coopera-

Cooperative behavior in human societies constitutes a puzzle that
has been both theoretically and experimentally studied in depth
over the last few decades. With the aim of bridging the gap
between both approaches, we propose a theoretical model based
on experimental findings. To this end, some agents are assumed

to be hawk-eyed: when making the decision whether to help or
not a given recipient, they consider not only the recipient’s past
actions but also to whom those actions were directed. Further-
more, we consider a memory effect by assuming that reputation
is based on a number M of recent actions. Agents decide whether
to cooperate or not according to an intolerance threshold on repu-
tation. It is shown that both evaluation rules and intolerance have
a non-trivial role in the persistence of cooperation.

tive behavior," including cooperation in structured populations.”™
Several mechanisms have been proposed to explain cooperation,’
such as kin selection,” direct'' or indirect reciprocity,'” group
selection,”” and network reciprocity.’*~"” Among them, indirect reci-
procity does not require repeated interactions between the same pair
of partners and offers a clear explanation of how this preference
for cooperation has evolved.'®” In a population, when an individ-
ual exhibits an altruistic behavior toward another one, he pays a
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cost—including time, energy, or risks—for his helping action even
if he cannot get immediate returns. However, if a third party knows
of his kind deed, he may provide help to this altruist in a later action
so that the original cost of the first agent can be counteracted to
obtain the positive benefit. That is, the helper receives the benefit not
from the beneficiary himself but another individual. Indirect reci-
procity requires public information about individual actions as well
as an evaluation system so that cooperation can be sustained for a
long time.”’~*” Thus, it is significant to build a feasible and reliable
evaluation system™ to differentiate between altruistic and selfish
persons and give the corresponding reward*>” for the contributor
or punishment*~** to the cheater.

Regarding the individual actions evaluation, probably the most
popular approach is the image scoring, proposed by Nowak and
Sigmund to explore the role of indirect reciprocity in the evolu-
tion of cooperation through computer simulations and theoretical
analyses.'>”” They showed that cooperation can thrive via the indi-
rect reciprocity if each agent holds an image score, being the score
increased (respectively, decreased) by one point for each act of help-
ing (not helping). According to this approach, a donor will provide
help to a recipient if, and only if, this recipient has a positive score.
Therefore, a player will obtain the help from others in the future if
he has helped more often than he has refused to do it.

However, there is no unanimity on the effectiveness of the
image scoring rule. As an example, Leimar and Hammerstein®
indicated theoretically that Sugden’s standing strategy’' provided
a much more effective mechanism to foster cooperation through
indirect reciprocity under a more complex population structure. In
Sugden’s standing model,” a player’s score only decreases when he
refuses to help a recipient with a good score. Unlike image scoring,
defecting against a bad guy does not penalize the donor’s reputation.
After that, Panchanathan and Boyd™ also explored the evolution
of indirect reciprocity when errors are considered, showing that,
under these circumstances, image scoring is not an evolutionary sta-
ble strategy (ESS), while the standing strategy can be. Henceforth,
only considering the actor’s action (usually termed as the first-order
evaluation) is not always enough when we design the rule of rep-
utation evaluation, it is necessary to take both the donor’s action
and the recipient’s reputation into account, which is referred to as a
second-order assessment rule.

As a further step, Ohtsuki and Iwasa’’** exhaustively discussed
the aforementioned two rules, together with other second-order
reputation evaluation schemes, and found that standing strategy is
often more successful than image scoring. In particular, they further
pointed out that only eight cases, called “leading eight,” signifi-
cantly facilitate indirect reciprocity. At the same time, extensive
experiments’>** are also conducted to illustrate how the standing or
scoring mechanisms are adopted in the human cooperation, and it is
indicated that the standing rule is not superior to the scoring mech-
anism due to the imperfect information™ or gossip’’ dissemination
during the real experiments.

A non-negligible fact is that, with some exceptions,” most
theoretical works assume the well-mixed structure to study the rep-
utation evaluation. Recently, Sasaki et al.* investigated the evolution
of reputation-based cooperation in a regular lattice considering four
leading second-order assessment rules (these rules will be defined
and discussed in Sec. II B). Through an agent-based model, they

)
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showed that those four rules lead to distinct cooperative behaviors,
which strongly depend on the setup, and it is particularly indicated
that the simple standing strategy is the most efficient one in terms of
the promotion of cooperation on regular ring networks.

It is worth noting that the above-mentioned theoretical mod-
els carry out the second-order reputation assessment just according
to the last action of a donor and the standing status of a recipi-
ent, that is, the historical information on individual actions in those
studies reduces to one step. Nevertheless, the historical informa-
tion (i.e., memory effect) may play a role in decision-making.” For
instance, Wang et al."’ presented a memory-based snowdrift game
on top of regular lattices and scale-free networks, where the fraction
of cooperating actions stored in the memory is used to determine
the strategy adoption at the next generation, finding that the mem-
ory length of individuals plays a distinct role as the cost-to-benefit
ratio is changed. In a recent work, Cuesta et al.*' showed through
experiments with memory effect that reputation fosters cooperation
and drives network formation. Furthermore, they found that people
measure reputation based on all the information available (memory
length), giving more weight to the last action. Thus, it is essential to
combine the second-order assessment information with the memory
effect to further study the role of indirect reciprocity in the evolution
of cooperation, and we try to fill this gap in the current work.

The rest of this paper is organized as follows. First, in Sec. II,
we introduce the donation game model with memory and second-
order assessment. Second, in Sec. 111, we address the model through
a mean-field approximation that, while omitting some key features,
helps its understanding and qualitatively predicts the macroscopic
behavior observed in Sec. IV, where we provide the results of large
numerical simulations. Finally, in Sec. V, we discuss the implications
of the model together with the conclusions.

Il. DONATION GAME MODEL WITH MEMORY AND
SECOND-ORDER ASSESSMENT

In this paper, we investigate the evolutionary donation game
in a finite size population, as formulated in most spatial indirect
reciprocity models.'” During each interaction, every actor (individ-
ual) has just one chance to play as a donor, i.e., donate or not to a
recipient, which is chosen within his neighborhood. Furthermore,
individual actions history will be considered as a basis of reputation
assessment,’’ according to four typical second-order strategies’”
below described in Sec. II B. Hence, the memory effect or history
of the recent actions will be combined with the reputation-based
assessment rule to analyze the evolution of cooperation within a
structured population. In what follows, we will describe in detail the
newly proposed donation game model with memory and second-
order assessment.

A. Donation game

In the proposed model, the interaction between any pair of
players can be described as a donation game, that is, one player is
selected as a donor and the other one as a recipient, and subse-
quently the donor will decide whether he will make a donation to
the recipient or not. If he donates, the donor will pay a cost ¢, and
the recipient will obtain a benefit b (b > c); if not, the donor will pay
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TABLE I. Representative second-order reputation assessment rules. In the second
row, C and D (i.e., cooperation and defection) designate the action of the donor fac-
ing a recipient whose previous action is displayed in the first row. From third to sixth
rows, G/B denotes that the donor will be evaluated as good (G) or bad (B) after the
corresponding actions.

Image scoring
Simple standing

Recipient’s image C C D D
Donor’s strategy C D C D
DShunning G B B B
Stern judging G B B G
G B G B
G B G G

nothing, and the recipient will not receive any benefit. Although the
donation does not give any direct benefit to donors, some individ-
uals may choose to donate to show a good image and then increase
their chances to get help from others in the future. Thus, the dona-
tion game is often chosen as a basic framework to explore the role of
indirect reciprocity.

B. Second-order assessment rules

How to judge the goodness of a recipient is crucial for the here
proposed model, and we select four typical second-order assessment
rules as the basis of the calculation of the recipient score.”” In Table I,
we depict the assessment results under these four rules including
shunning, stern judging, image scoring, and simple standing. We
summarize their main features as follows:

Shunning: The donor is positively evaluated when he cooperates

(donates) against a cooperator. Otherwise (when he cooperates

against a defector or whenever he defects), he will be negatively

evaluated. This is the strictest rule to obtain a good image.

Stern judging: The donor will be positively evaluated if he coop-

erates against a cooperator or if he defects (rejects the donation)

against a defector. Otherwise, he will be negatively evaluated. To

a certain extent, this rule will justify the defection since rejecting

the donation to a recipient with a bad image is not considered a

bad action, which helps a bad recipient to cleanse his image by

refusing to help another player with a bad image.

« Image scoring: The donor will be positively evaluated if he coop-
erates or negatively evaluated if he defects, regardless of the
recipient’s past actions. In essence, this is a first-order rule since
the image of an agent is uniquely determined by his own action.

« Simple standing: The donor will be negatively evaluated only if

defects against a cooperator. Otherwise (when he defects against

a defector or whenever he cooperates), he will be positively eval-

uated. Henceforth, the simple standing rule is the most tolerant

rule for a donor to get a good evaluation among the four rules
considered here.

For all these rules, when facing cooperator, a player will be pos-
itively evaluated if he cooperates and negatively if he defects. The
differences between these four rules appear when the donor meets a
defector.

ARTICLE scitation.org/journal/cha

C. Initial conditions

Let us consider a regular grid lattice of size L (the total num-
ber of players is N = L x L), which satisfies the periodic boundary
conditions, and each node of the lattice will be occupied by a player
who has eight nearest neighbors (i.e., we consider the Moore neigh-
borhood). Initially, each player will be randomly assigned equiprob-
ably to one of three possible strategies: unconditional cooperator
(ALLC), unconditional defector (ALLD), or discriminator (DISC),
which can be described in detail as follows:

o ALLC: the donor always cooperates, that is, ALLC strategists are
unconditional cooperators.

o ALLD: the donor defects under any scenario. ALLD strategists are
unconditional defectors.

 DISC: the decision of whether to cooperate or not depends on the
estimated reputation score of the recipient, which in turn is based
(i) on the last recipient’s actions and (ii) on the donor’s assessment
rule. We term these strategists as discriminators; the assessment
rules have been described in Sec. II B.

Players, as donors, are characterized by four possible actions: CC,
CD, DC, and DD. Two of these actions, CC and CD, correspond to
cooperative actions, namely, CC when cooperating against a coop-
erator (i.e., the recipient cooperated in his last action) and CD when
cooperating against a defector (recipient’s last action was to defect).
The other two actions, DC and DD, correspond to non-cooperative
actions: DC if a player defects against a cooperator and DD if he
defects against a defector. In order to characterize the memory effect
of individuals in the current model, we will record the action lists for
each individual in the most recent M steps.*'

Regarding the initial conditions, first M actions of ALLC
(respectively, ALLD) strategists are randomly chosen from CC or
CD (respectively, DC or DD), while first M actions of DISC strate-
gists are randomly taken from the set {CC, CD, DC, DD} and
determined by the specific assessment rule of the discriminator
(Sec. 11 B).

D. Iteration procedure

The evolution of the game will be hinged in the following way:
at each elementary time step, a random player (the focal player or
donor) chooses a random neighbor (the recipient) and decides if he
cooperates or not. At each period, any player will have, on average,
one chance to act as a donor, that is, a period consists of N ele-
mentary time steps (donation game decisions) that will take part in
random order.

Let us explain in detail the dynamical procedure:

o ALLC: if the focal player-i is an unconditional cooperator, he pays
the cost ¢ to player-j who obtains the benefit b (i and j payoffs are
—cand b, respectively). We record i’s last action as CC if player-7’s
last action was CC or CD; otherwise, the last action of player-i is
recorded as CD.

o ALLD: if the focal player-i is an unconditional defector, he rejects
the donation to his partner j, and both payoffs are zero. We
record 7’s last action as DC if player-j’s last action was CC or CD;
otherwise, the last action of player-i is recorded as DD.

Chaos 30, 063122 (2020); doi: 10.1063/5.0009758
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« DISC: if the focal player-i is a discriminator, he will calculate
the weighted image score of player-j in the light of four differ-
ent assessment rules as shown in Table 1. If player-j’s score is
higher than the required minimum reputation Hy, player-i will
donate to j; otherwise, player-i will reject the donation. Hy repre-
sents a minimum threshold so that the recipient can be considered
good enough to be a beneficiary of the donation. It is, therefore,
a measure of the intolerance. Finally, player-i’s last action will be
accordingly updated. The detailed decision procedure for DISC
players can be further described as follows:

(1) Assessment. Player-i will evaluate player-j’s actions to be
good (G) or bad (B) according to Table I. As an example,
we assume that player-i is a discriminator adopting the stern
judging rule, and the last M = 5 actions of player-j are CC,
DC, CD, DD, and CC. Then, based on Table I, player-i judges
player-j’s goodness of action list to be G, B, B, G, and G.

(2) Calculation of the weighted score. If the action is judged as
good (G) or bad (B), the corresponding score will be 1 or 0,
respectively. The final reputation score of player-j through the
eyes of player-i will be defined as

ri=w*S+ (1 —w) xS, (1)

where S denotes the score of j’s last action and S rep-
resents the average score of j’s M last actions. In the
above-mentioned example, player-j’s score will be 7;; = w * 1
+ (1 —w)x* W =w+ (1 — w)(3/5). Note that w is a
weight and that S also includes the last action S. The jus-
tification for this weight can be found in the experimental
cooperation literature. It has been shown through lab-based
human experiments’' that people measures reputation based
on the weighted average of the fraction of cooperative actions
(C) and the last action performed (Cy,), in which the cou-
pling relationship can be linearly characterized as w * Cjuq
+ (1 — w) % C. Here, in the numerical simulations, w will be
fitted to 0.165 from the experimental data.”!

(3) Decision. If rj; > Hy, player-i will pay the cost ¢ to cooperate
with Player-j, who will obtain the benefit b. Otherwise, player-
i will defect, and both payoffs will be zero. We will record
player-i last action accordingly.

A generation includes h of the above described periods. At the
end of a generation, all the players synchronously update their cur-
rent strategies (i.e., ALLC, ALLD, and DISC) following a Fermi-like
updating rule.””~"” Let P; and P; be the payoffs of player i and a ran-
dom neighbor j, accumulated throughout the last generation. Then,
player-i will imitate player-j’s strategy with a probability Prob(i <— j)
given by

1
1+ e Pi—P)/K>

Prob(i < j) = (2)

where K denotes the irrationality of individual choice or the noise of
strategy adoption.

Note that the model includes two different time scales: a time
scale involving payoff-independent decision-making strategies'”**
and another longer scale, of evolutionary character, involving strate-
gies imitation."

scitation.org/journal/cha

I1l. MEAN-FIELD APPROXIMATION

In this section, we discuss various approaches to obtain a
mean-field solution to the model here presented. These approaches
preserve the assessment rules based on the second-order reputation
while neglecting some aspects related to the spacial distribution and
formation of clusters, the length of the memory and the weight of
the last action. The goal of this mean-field approximation is to cap-
ture the qualitative behavior of the system and detect which specific
aspects are not reproduced due to the ingredients not considered
here. Throughout this section, we will refer to Figs. 1 and 2 (which
contain the numerical results that will be developed in Sec. IV) to
have a visual reference of the parameter space and, also, to compare
the predictions with the agent-based numerical results.

Consider a well-mixed population and the low noise case
(K « hb), which allows us to assume a deterministic imitation
rule. Let p., p4, and p; be the fraction of ALLC, ALLD, and DISC
strategists, respectively. For simplicity, let us consider an initial
population defined by p, = ps = p; = 1/3.

A. Image scoring

Here, we study the case when DISCs are image scoring strate-
gists. Discriminators always donate to ALLC, but never to ALLD
players. Let (r;;) be the mean value of the reputation score of a DISC
as seen by another DISC. From Eq. (1) and Table I, it follows:

(rii) = w(C) + (1 —w)(C) = (C), 3)

where (C) is the fraction of cooperative actions in the system. Note
that w influences the variance of r;; but not its mean value. On
average, a DISC will give to another DISC if (r;;) > Ho.

The average payoffs for ALLC, ALLD, and DISC strategists are,
respectively,

I = (pc + pi)b — ¢,

I = pcb,

IT; = (pc + PO ({riyi) — Ho))(b — ¢©)
= (pc + p;®(C) — H))(b — 0),

where © stands for the Heaviside function which is zero for negative
arguments and one for positive ones.

4

1. Low Hy

For low enough values of H, (i.e., Hy < (C)), DISC players,
on average, will cooperate when facing another DISC. The average
cooperation level within a generation (constant p, p4, p;) evolves
according to

0
@z 40— (OZ T (5)
1
Within the first generation, given p. = ps = p; = 1/3, (C)
evolves to a value greater than 1/2. When H, < (C), what is true
for Hy < 0.5, the average payoff of a DISC is given by

Chaos 30, 063122 (2020); doi: 10.1063/5.0009758
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FIG. 1. Fraction of cooperating actions (C) in the stationary state as a function of the benefit b and intolerance Hj for shunning (), stern judging (b), image scoring (c), and
simple standing (d) assessment rules. All results are averaged over 20 independent runs. Other parameters are N = 2500, ¢ = 1, w = 0.165, h = 50, M = 5,and K = 1.

what implies that IT; > 1, if p;b > (p. + pi)c. At the end of the
first generation, this condition will be satisfied for b > 2c. For
b > 2¢, DISC will overcome both ALLD and ALLC, while ALLD will
overcome ALLC. If (C) increases over time, condition Hy < (C) is
preserved, and therefore Eq. (6). Furthermore, as p; increases over
time, I1; — I1, increases. So, we can conclude that, for Hy < 0.5,
DISC will invade ALLD if b > 2c.

Regarding the resilience of ALLC strategists, on the one hand,
the average payoff difference between ALLC and ALLD is given by

I, — Iy = pib— ¢, (8)

what implies that I1. > T1, if p;b > c. For the initial strategists dis-
tribution (p; = 1/3), ALLC defeats ALLD for b > 3c. On the other

hand, the payoff difference between DISC and ALLC is
I; — I = cpa, )

that is, I1; > I1, if p; > 0, I1; = I, otherwise. Actually, in the
absence of ALLD players, ALLC and DISC are indistinguishable
strategists.

Summarizing, regarding panels (III) in Fig. 2, where ¢ = 1:

» Upper left area. Provided b > 3, the higher the value of b, the
higher the fraction of ALLC that will survive the first stages and
will coexist with DISC players at the steady state.

o For 3 > b > 2, DISC will invade ALLC and ALLD.

« Bottom left corner. For b < 2, we have I1; — IT; = p., and ALLD
will invade ALLC and DISC.

Chaos 30, 063122 (2020); doi: 10.1063/5.0009758
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FIG. 2. Fraction of unconditional cooperators (ALLC), unconditional defectors (ALLD), and discriminators (DISC) at the stationary state as a function of the benefit b and
intolerance Hj for four different second-order assessment rules. From left to right, each column corresponds to a different rule: shunning (column 1), stern judging (I), image
scoring (1Il), and simple standing (IV). Top (respectively, center, bottom) row panels display the fraction of ALLC (respectively, ALLD, DISC) strategists. All results are averaged

over 20 independent runs. Other parameters are N = 2500, ¢ = 1, w = 0.165, h = 50, M = 5, and K = 1. See the text for further details.

2. High H,
For high values of H, (i.e., Hy < (C)), the average cooperation
level within a generation (constant p,, p4, p;) evolves according to

(@S pt+plC) — (OF

~Yl-p

(10)

Within the first generation (p. = ps = p; = 1/3), (C) evolves
to a value lower than 1/2. When H, > 0.5, the average payoff of a
DISC is given by
IT; = pe(b — o), (11)
and, therefore,
I — IT; = pac + pi(b — o),
(12)
Iy — IT; = p.c.

For high enough values of b, both ALLC and ALLD will defeat
DISC. Taking into account,

M, -, =c— ,Oiba (13)

the advantage of the ALLD over the ALLC increases as p; decreases,
which in turn leads to a reduction in p, and to an absorbing mono-
strategic state of ALLD [upper-right and central-right area of panels
(III) in Fig. 2].

As b decreases, the average payoff difference between ALLC
and DISC [i.e., p;b — (p; — pa)c] decreases. Note that, in the absence
of ALLC, DISC strategists never donate; therefore, ALLD and DISC
are indistinguishable strategists: if some DISC strategists survive the
first stages surrounded by DISC and ALLD, they will coexist (as
defectors) with ALLD, allowing a mixed equilibrium of ALLD and
DISC [bottom-right area of panels (III) in Fig. 2]. Note that, in any
case, the only action will be to defect [right area of panel (c) in Fig. 1].

B. Shunning

In this subsection, we analyze the case when DISCs are shun-
ning strategists. In this case, discriminators never donate to ALLD.
On the other hand, ALLC always cooperate, but only when cooper-
ating with a cooperator will be positively evaluated by DISC.
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The mean reputation scores of ALLC, ALLD, and DISC players
through the eyes of a DISC are, respectively,

(rqi) = (C),
(ragi) =0, (14)
<ri|i> = (C)Z-

1. Low H,

For low relative values of Hy (i.e., Hy < (C)), DISC players, on
average, will pay to ALLC. The average cooperation level within a
generation (constant p., p4, p;) evolves according to

1 = 1 —4pp
2pi

In the first generation (o, = ps = p; = 1/3), (C) evolves to a value
greater than ~ 0.38. When H, < (C)?, what s true in the early stages
for Hy < 0.15, the average payoffs are given by

(€ Zp+p(C)F — (O (15)

nc = (pc + px)b -G
[y = pcb, (16)
IT; = (o + pi) (b —©),

which are the same payoffs that those of Egs. (4) and (6) correspond-
ing to the previous image scoring—low Hj case, and, therefore, the
same analysis applies here. Note that, although payoffs in Eq. (16)
were calculated for the first generation, (C) increases over time and,
therefore, also the payoffs differences. A consequence is the similar-
ity between the left part of the respective panels (I) and (III) in Fig. 2
and between panels (a) and (c) in Fig. 1. Nevertheless, given the fact
that the condition of low H, is more restrictive in the current case,
the cooperative green area on the right side of panel (a) in Fig. 1 is
smaller than that in panel (c).

2. High H,

For high values of H, (i.e., Hy > (C)), DISC players, on average,
will not donate to ALLC. The cooperation level within a generation
evolves according to

1—1—4p.p

2pi ’

Therefore, the condition Hy > (r;;) = (C)? is satisfied at the

end of the first generation (p, = p; = 1/3, (C) < 0.38). It follows

that DISC players, on average, will not donate to anybody. The
payoffs are given by

(€ Sp+p(C)F — (OF (17)

I, =pb—c

18
My =11, = ,ch~ ( )

For high values of Hy, DISC will play as ALLD, both having a higher
payoff than ALLC.

Payoffs in (18) were calculated for the first generation. Never-
theless, (C) decreases over time as DISC and ALLD overcome ALLC,
and, therefore, (r;;) decreases according to (14). This means that the
order of the payoffs is preserved over time: ALLD and DISC will
invade ALLC. Although there is a mixed equilibrium composed of
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DISC and ALLD strategists [right side of panels (I) in Fig. 2], the
former will act as defectors, and, therefore, the cooperative level will
tend to zero [right side of panel (a) in Fig. 1].

Since in this case IT; = IT;, higher-order effects beyond the
mean-field approach should play a key role. Although for H, > (C),
DISC players, on average, will not donate to any strategist, there is an
& > 0 probability for a DISC to pay to an ALLC (and an even smaller
probability to pay to another DISC). By adding this corrective term,
the average DISC payoff becomes

IT; = pcb — epcc = pc(b — ec). (19)

The lower the value of Hy (also the shorter the memory length M),
the higher the value of . Furthermore, the relative payoff difference
between ALLD and DISC will decrease as b increases. To summa-
rize, although according to the mean-field approximation ALLD and
DISC payofts are equal, higher-order effects imply a dependence of
the final mixed equilibrium on b and H.

C. Stern judging

Here, we investigate the case when DISCs are stern judging
strategists. Depending on the values of the parameters, DISC players
may donate or not both to ALLC and ALLD players. The mean rep-
utation scores of the different strategist, as seen by a DISC, are given

by
{rai) = (C),
(rai) =1 —(C), (20)
(ryi) = (O + (1 — (C)*.

1. Low Hy

From (20) it follows that, provided H, < (C) and H,
< (1 — (C)), DISC players, on average, will pay to ALLC and ALLD.
At the first generation (p, = ps = p; = 1/3), on average, half of the
actions of a DISC will be considered as good actions by another
DISC. The average cooperation level within a generation (constant
Pe> Pa» Pi) evolves according to

(C) Z pe+ pi{C) + pi(1 = (C)* —

S 20+ 1= /1 —40] —8pepi + 4p, @)
~ 4p; '

(€

Therefore, for (o, = pg = p; = 1/3), it follows (ry;) = 1/2.The
corresponding average payoffs for Hy < 1/3 will be

I, =II; = (o + pi)b — ¢,

(22)
Iy = (pc + pi)b.

At the end of the first generation, ALLD players overcome
ALLC and DISC and (C) decreases. Therefore, according to (20),
(ri) decreases and (ry;) increases over time. In the same way, (r;;)
tends to p; + p; as (C) decreases and, therefore, to 1 as p,. decreases.
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Consequently, payoffs evolve over time toward

I, = pcb -6
g = (pc + p)b, (23)
IT; = (o + p)b — ¢,

and ALLD strategy will invade ALLC and DISC [left area of panels
(II) in Fig. 2].

Mean-field approximation cannot reproduce the cooperative
behavior observed in the numerical simulations for high values of
b, when payoff differences are small and other high-order effects
become key. As in the previous case, there are two equal payoffs in
(23), here I1, = I1,. By adding a higher-order corrective term, the
average DISC payoff for the first stages becomes

IT; = (p. + pi)b — (1 — &)c.

Note that, unlike the previous case (shunning, high Hy), the correc-
tive term now applies to the probability of a DISC to defect against
any strategist (i.e., it is not multiplied by a density p), becoming
higher than that for shunning discriminators. The relative payoff
difference between ALLD and the rest of the players will decrease
as b increases. For high values of b, the differences between the pay-
offs cannot prevent the formation of cooperative clusters. Note that
this cooperative behavior [upper left corner of panel (b) in Fig. 1]
corresponds to DISC strategist that act as cooperators.

2. High Ho

For high relative values of H, (ie, H, > (C) and H,
> (1 — (C)), DISC players, on average, will pay neither ALLC nor
ALLD. As in the previous case (low Hp), at the first generation
(e = pa = pi = 1/3), on average, half of the actions of a DISC
will be considered as good actions by another DISC. The average
cooperation level within a generation evolves according to

(O) S pe+ PO + pi(1 = (C)* —

201+ 1 — /1 —4p? —8p.pi + 4p; (24)
4p;i .

(OB

Solving it for p. = p; = 1/3, it is found that for H, > 1/2, a DISC
will probably defect when facing any strategist. Regarding higher-
order effects, the shorter the memory length M, the higher the
probability & for a DISC to cooperate.

At the end of the first generation, the corresponding average
payoffs will be

I, = pb—c
I, = ,ch, (25)
I, = p.b — ec,

where the higher-order corrective term ¢ has been added (IT; = I,
in the mean-field). Given IT; > IT; > I, ALLD players will beat
ALLC and DISC. According to (20), the consequent decrease of (C)
leads to an increase in (ry;) and (r;;) and to a decrease in (r;).
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Consequently, payoffs evolve over time toward

I, = pb—c
g = (o + pi)b, (26)
I, = (p. + pi)b — ¢,

and ALLD strategy will invade ALLC and DISC, bringing the system
to a mono-strategic ALLD state [right area of panels (II) in Fig. 2].

D. Simple standing

In this subsection we discuss the case when DISC are simple
standing strategists. In this case, discriminators always cooperate
when facing an ALLC. Regarding ALLD strategists, an ALLD defect-
ing against a defector will be positively evaluated by a DISC. The
mean value of the reputation scores through the eyes of a DISC are

(rqi) =1,
(rap) = 1 —(C), (27)
(ry) = (C) + (1 — (C)™.

On average, a DISC will give to an ALLD if (ry;) =1 — (C) > H,.
Regarding how a DISC evaluates another DISC, note that the func-
tion (ry;)({C)) is not monotonous, reaching a minimum value for
(Cy=1/2.

For low relative values of H, (i.e., Hy < 1 — (C)), DISC play-
ers, on average, will pay to ALLD. Within a generation, the average
cooperation evolves according to

(C) 2 pe+ pi(C) + (1 = (C))). (28)

Solving (28) for p, = p; = 1/3, it is found that (C) evolves
toward (C) 2 0.59 within the first generation. It follows that, at the
end of the first generation, DISC will pay to all the strategists for
H < 0.41. The corresponding average payoffs are given by

I, =11, = (pc +/01)h— G

(29)
Iy = (pc + pi)b.

Therefore, ALLD players will overcome ALLC and DISC. As py
and (1 — (C)) increase over time, r;; increases, and the system will
evolve in time toward (ry;) = (rg;) = (ry;) = 1, with DISC playing
as ALLC. The system is characterized by a fraction p. + p4 of coop-
erators and a fraction p, of defectors. This is the classical scenario
where mean-field approach involves full defection (ALLD) and can-
not explain cooperation for high enough values of b in structured
populations (and also with memory in this model).

As H, increases, the probability for a DISC to pay to an ALLD
decreases. For Hy > 1 — (C), DISC players, on average, will not
donate to ALLD. Approximation (28) becomes

(C) S pe+ pi(C) + (1 = (C)). (30)

Solving (30) for p. = p; = 1/3, it is found that within the first gen-
eration the cooperation will tend to (C) —~ 0.59. At the end of
the first generation, for Hy 2 0.41, and the average payoffs can be
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approximated by
I, = (p. + pi)b — ¢,
I, = p.b, (31)
I = (pc + pi) (b —©),
and the average payoff difference between DISC and ALLD will be
I; — My = (o + pi)(b—¢) — pb = pib — (o + p)c.  (32)

In the first stages (o, = p;), DISC players will overcome ALLC and
ALLD for b > 2c. Nevertheless, the consequent increase of p; and
(C) over time leads to a decrease in (r;;) and to an increase in (r;).
This fact involves a trade-off between b and Hj: a lower value of H,
involves a higher b to allow DISC invading ALLD [column (IV) in
Fig. 2].

Regarding ALLC strategists, the average payoffs differences are
given by

.-y =pb—c

IT; — T = cpa4,

(33)

what implies that I1, > I1, for p;b > c. At the first stage (o; = 1/3),
ALLC defeats ALLD for b > 3c. Furthermore, I1; > I1, if p; > 0,
otherwise IT; = Il.. Actually, for p; = 0, ALLC and DISC are indis-
tinguishable strategists. Provided b > 3, the higher the value of b, the
higher the fraction of ALLC players that will survive the first stages
and will coexist with DISC ones at the steady state [panels (d1) and
(d3) in Fig. 2].

IV. NUMERICAL SIMULATIONS

In this section, we present and discuss the results of numerical
simulations for the agent-based model proposed here. We reduce
the payoffs matrix parameters by fixing ¢ = 1 and focus on the
impact of recipient’s benefit b and intolerance threshold H, on the
cooperative behavior under the different second-order assessment
rules considered. Based on previous experiments,’’ we fix the addi-
tional weight of the last action to w = 0.165 and the memory length
to M = 5. Each independent realization is run up to 2000 genera-
tions, ensuring that the system can reach a steady state, which is
reached typically after 100-1000 generations. Figures 1-5, which will
be discussed in the following subsections, display the results cor-
responding to N = 2500 (L = 50). Additionally, larger lattice sizes
(e.g., N = 10*) are also tested and qualitatively equivalent results
have been obtained (not shown here for brevity).

A. Level of cooperation and strategies distribution

Figure 1 displays the stationary fraction of cooperative actions
(C) as a function of the benefit b and intolerance Hy, each panel
corresponding to each one of the four assessment rules considered:
shunning (a), stern judging (b), image scoring (c), and simple stand-
ing (d). In general, a very low recipient’s benefit (b ~ 1) does not
encourage the donor to donate . For higher values of b, the level of
cooperation depends on the benefit b and intolerance Hy in different
ways for different assessment rules. As shown, a low intolerance Hy
promotes cooperation for image scoring and shunning rules while,
conversely, simple standing rule behaves better for high values of
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H. Finally, stern judging rule is the least favorable for cooperation
since it only allows cooperative actions for very high benefit b and
low intolerance Hy. This last result differs from previous studies”**’
where neither memory nor intolerance was considered.

To further study the differences in the cooperation level for the
different assessment rules, Fig. 2 shows the distribution of the dif-
ferent strategies—ALLC, ALLD, and DISC—as a function of b and
H,. From left to right, each column corresponds to one of the four
assessment rules: shunning (column I), stern judging (II), image
scoring (III), and simple standing (IV). Additionally, for each col-
umn, the fraction of each strategy at the stationary state is shown in
different rows: ALLC (panels in top row), ALLD (center), and DISC
(bottom). Generally speaking, under one specific assessment rule,
the level of cooperation is determined by the competition between
ALLD, DISC, and ALLC strategists. The coexistence of these three
strategies is difficult, showing (simplex) inner points only for very
specific regions of the parameter space.

The distribution of strategies can help explain cooperative
behavior for the different rules. Note that the arguments used
here, although from a qualitative nature, include more ingredients
than those used in the previous mean-field approximation, such as
memory and spatial distribution, and the results exhibit some new
non-trivial phenomena as follows:

« Shunning: Here, DISC players will only positively evaluate CC
actions and, therefore, do not cooperate against ALLD players.
For a low intolerance threshold Hy, given an initial homogeneous
strategy distribution (o ~ p4 ~ p;), and a large enough memory
(in plots, M = 5), DISC and ALLC players will have, on average,
a fraction ug of CC actions in their memory such that ug > H,,
and, therefore, will be positively evaluated by DISC players. Thus,
DISCs will likely cooperate when facing DISC and ALLC players.
As ALLC strategists will cooperate against any strategist, ALLC
and DISC players can group and form cooperative clusters for
high enough b, invading ALLD players (who only receive dona-
tions from ALLC players). Without ALLD players, ALLC and
DISC are equivalent strategies and will coexist as cooperators. On
the other hand, for high values of intolerance Hy, a small frac-
tion of actions belonging to the set {DC, CD, DD} (any strategist
is compatible with one or more actions in that set and will be
likely present in his history at the early stages) is enough to be
negatively evaluated by other DISC players, that is, any strategist
will have, on average, a fraction s of CC or actions in his mem-
ory such that ug < Hy, and, therefore, will be negatively evaluated
by DISC players. Thus, DISC strategists will likely not cooperate
against any strategist, acting as ALLD players. DISC and ALLD
players (which constitute a majority acting as a unique strategy)
will invade ALLC and will coexist as defectors.

Stern judging: In this rule, DISC players will positively evalu-
ate CC and DD actions. For low values of H, at early stages
(pec ~ pa ~ pi), any strategist will have in his memory, on aver-
age, a fraction pg of actions belonging to the set {CC, DD} such
that ug > Hy and, therefore, will be positively evaluated by DISC
players. Thus, DISC players will likely cooperate when facing any
strategist, behaving as ALLC players. Unlike the previous shun-
ning case, where ALLD players obtained benefit only from ALLC,
now they get donations both from ALLC and DISC players, thus
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having a higher relative payoff and resulting in an invasion of
ALLD over the rest of strategies. Only for very high values of ben-
efit (in Figs. 1 and 2, b 2 9) DISC players can resist invasion by
ALLD; actually, this is the only region of parameters that allows
cooperation. On the other hand, for high values of intolerance Hy,
and at early stages, any strategist will have, on average, a fraction
ws of actions belonging to the set {CC, DD} in his memory such
that gy < Hp and, therefore, will be negatively evaluated by DISC
players. However, although DISC players tend to defect against
any strategist, they have a non-zero probability of cooperating
when facing any player (either ALLC, ALLD, or DISC), resulting
in a lower accumulated payoff than that of ALLD players. There-
fore, DISC players will get the higher accumulated payoff, which
drives to an invasion of ALLD strategy over ALLC and DISC.

Image scoring: Here, DISC players will positively evaluate CC
and CD actions and, therefore, will cooperate against ALLC but
not against ALLD players. For low values of intolerance Hj, at
early stages, DISC players will have, on average, a fraction p
of actions cooperative actions (CC or CD) in their memory such
that j1;5 > Hy and, therefore, will be positively evaluated by other
DISC players. Thus, DISCs will likely cooperate when facing DISC
and ALLC players. This is the same situation than that corre-
sponding to the previous shunning—low H, case: ALLC and
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DISC players can form cooperative clusters for high enough b,
invading ALLD strategy. Without ALLD players, ALLC and DISC
will coexist as cooperators. On the other hand, for high values of
intolerance Hy, at early stages, DISC players will have, on aver-
age, a fraction 1-u,s of non-cooperative actions in their memory
such that s < Hy and, therefore, will likely be negatively evalu-
ated by other DISC players. Each strategist will cooperate against
a different set of strategies: ALLC against any strategist, DISC
against ALLC ones, and ALLD against no strategist. This results
in a three-strategy scenario where the higher payoff corresponds
to ALLD players, who will invade ALLC and ALLD.

Simple standing: This rule is the most tolerant: the only nega-
tively evaluated action is defecting against a cooperator. Coun-
terintuitively, while high values of intolerance H, promote coop-
eration, low values drive to non-cooperative states. Here, DISC
players will positively evaluate CC, CD, and DD actions. As the
available actions for ALLC players are {CC, CD}, and those for
DISC ones are {CC, CD, DD}, DISC strategists will always cooper-
ate against any ALLC or DISC player. For low values of Hy, at early
stages, ALLD players will have, on average, a fraction pss of DD
actions in their memory such that pgs > Hp and, therefore, will
be positively evaluated by DISC strategists. This is the same situ-
ation than that corresponding to the previous stern judging—low

“Ht=1000 (d)t=1999

FIG. 3. Evolution of strategies for the shunning rule. The snapshots show the spatial distribution of three different strategists on the square lattice in a representative
realization in which DISC strategists follow the shunning rule. From panel (a) to panel (h), we record the distribution of ALLC (yellow dots), ALLD (gray dots), and DISC (blue
dots), with each panel corresponding to a different time frame ¢ (generation). For this realization, we have taken Hy = 0.2 and b = 9. Other parameters are N = 2500,

c=1,w=0.165h=50,M=5andK = 1.
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H case: DISC players will behave as ALLC players. ALLD players
will obtain the higher accumulated payoff, resulting in an inva-
sion of ALLD over the rest of strategies. Only for very high values
of b, DISC players can resist invasion by ALLD. As H, increases,
wss — Hy decreases, moving toward the following scenario: for
high values of intolerance Hy, ALLD players will have, on average,
a fraction pgs of DD actions at the early stages such that ugs < Hy
and, therefore, will be negatively evaluated by DISC players. Thus,
DISC players will cooperate when facing DISC and ALLC, but
very unlikely when facing ALLD players. As ALLC strategists will
cooperate against any player, ALLC and DISC players can form
cooperative clusters for high enough b, invading ALLD strate-
gists who only receive donations from ALLC. In the absence of
ALLD players, ALLC and DISC strategists will behave alike and
will coexist.

B. Spatial patterns

In this subsection, we analyze the strategies evolution through
characteristic snapshots. Taking the shunning rule as an example,
Figs. 3 and 4 display the strategies distribution on the square lattice
at different generations () to scrutinize the evolutionary process for
a low intolerance (Hy = 0.2) in Fig. 3 and large (Hy = 0.9) in Fig. 4.
As mentioned above, for low values of Hy, ALLC and DISC players
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are more easily to be positively evaluated: DISC strategists will coop-
erate when facing DISC and ALLC players, allowing the formation
of cooperative clusters. In Fig. 3, it is shown that ALLD strategists
(gray dots) are gradually invaded by ALLC and DISC ones, and they
disappear after around 100 generations. Even if we reduce the bene-
fit of the recipient (say b = 2 or 3), similar patterns are still observed
(although they are not shown here for the sake of shortness). How-
ever, when H, is large enough (e.g., Hy 2 0.5), ALLC and DISC
players are often negatively evaluated, which leads DISCs to act as
ALLD strategists. Thus, for large Hy, ALLD and DISC strategies are
equivalent and invade ALLC. This behavior is shown in Fig. 4, where
gray (ALLD) and blue (DISC) dots dominate the whole population
just after ten generations.

Similarly, the image scoring rule also creates the coexistence
between ALLC and DISC ones for low values of the intolerance H,
and even this case appears for larger Hy when compared to the shun-
ning rule (the corresponding characteristic snapshots are not shown
here for the sake of brevity). Conversely, for high intolerance Hj,
as mentioned above, DISC players cooperate when facing ALLC but
not DISC ones. Thus, ALLD players obtain the higher benefit and
dominate the whole population. This evolutionary process is illus-
trated in Fig. 5, where the simulation setup is identical to that of
Fig. 4 except that here applies the image scoring rule. The same
approach can be used to characterize the competition among three

(f) t=1000

(d) t=19

FIG. 4. Evolution of strategies under the shunning rule. From panel (a) to panel (h), we record the distribution of ALLC (yellow dots), ALLD (gray), and DISC (Blue). Each panel
corresponds to a different time frame t (generation). In this characteristic simulation, Hy = 0.9 and b = 4. Other parameters are N = 2500, ¢ = 1, w = 0.165, h = 50,

M=05andK = 1.
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@ =10 (e) t=100

() t=1000 (d) t=1999

FIG. 5. Time evolution of three different strategies under the image scoring rule. From panel (a) to panel (h), we record the distribution of ALLC (yellow dots), ALLD (gray),
and DISC (blue dots) with each panel corresponding to a different time frame. In this characteristic realizations, we have taken Hy = 0.9 and b = 4. Other parameters are

N =2500,c=1,w=0.165h=50,M =5,and K = 1.

strategies under stern judging and simple standing rules (not shown
here for conciseness).

V. DISCUSSION AND CONCLUSIONS

In this paper, we combine four typical second-order assessment
rules with the memory effect to explore the evolution of cooperation
in the spatial donation game. To this end, the reputation evaluation
takes into account the last M actions of the agents. We discuss the
impact of four assessment rules—namely, shunning, stern judging,
image scoring, and simple standing—on the level of cooperation
among the population. It is found that the assessment rule plays a
non-trivial role in the evolution of cooperation.

In our model, the interplay between any pair of players can
be characterized as a donation game, where a player is chosen as
a donor and the other one as a recipient. If the donor contributes by
paying a cost ¢, the recipient will get a benefit b > c; otherwise, both
will get nothing. We implement two dynamics, one in which strate-
gies do not take into account neighbors’ payoffs but their reputation
modulated by an intolerance parameter and another evolutionary
dynamic that takes place at a larger time scale.

We have studied the model through a mean-field approxima-
tion, finding that the role of intolerance varies according to the
assessment rule: while under shunning, stern judging, and image

scoring rules intolerance hinders cooperation, it counterintuitively
promotes it under simple standing rule. Moreover, it is shown that
stern judging rule, despite being a positive rule (positively evalu-
ates more actions than the shunning rule), is the one that shows, by
far, the lowest values of cooperation. We have performed extensive
simulations that confirm these findings, including sharp transi-
tions in the cooperation level and smooth transitions in the strategy
distribution.

Furthermore, there are several other parameters (e.g., noise
parameter K and memory length M) that deserve consideration in
future research. As K increases, the strategy adoption uncertainty is
also increased, but the level of cooperation can still be qualitatively
kept unchanged in the current setup. With regard to the impact
of memory length or weight, we only adopt the parameter values
(M = 5and w = 0.165) in Ref. 41, but it may deserve further discus-
sion in the future. Meanwhile, observation or reputation evaluation
errors may take place during the decision of donation, which is also
worth being further investigated in future studies. Another potential
direction could be conducted to explore the impact of second-order
assessment rules in heterogeneous networks, such as small-world*
and scale-free'” networks.

Taken together, based on previous experimental findings on
human behavior, we present a novel second-order evaluation model
with memory effect to investigate the evolution of cooperation in
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the spatial donation game. These results may help to understand the
cooperative behavior under the indirect reciprocity and reputation
mechanisms.
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