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Abstract. Universal spectral properties of multiplex networks allow us to assess
the nature of the transition between disease-free and endemic phases in the SIS
epidemic spreading model. In a multiplex network, depending on a coupling
parameter, p, the inverse participation ratio (IPR) of the leading eigenvector of
the adjacency matrix can be in two different structural regimes: (i) layer-localized
and (ii) delocalized. Here we formalize the structural transition point, p∗, between
these two regimes, showing that there are universal properties regarding both
the layer size n and the layer configurations. Namely, we show that IPR ∼ n−δ,
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with δ ≈ 1, and revealed an approximately linear relationship between p∗ and
the difference between the layers’ average degrees. Furthermore, we showed that
this multiplex structural transition is intrinsically connected with the nature of
the SIS phase transition, allowing us to both understand and quantify the phe-
nomenon. As these results are related to the universal properties of the leading
eigenvector, we expect that our findings might be relevant to other dynamical
processes in complex networks.

Keywords: critical phenomena of socio-economic systems, network dynamics,
random graphs, networks, random matrix theory and extensions
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1. Introduction

Universality is at the core of physics [1, 2]. Universal properties do not change from one
system to another but represent an entire class of them. They allow us to go beyond
the observation of macro variables towards the understanding of the mechanisms that
trigger a given behavior. Another notable consequence of universality is that by under-
standing the behavior of one system, we are able to make conclusions about other
systems of the same class or governed by the same set of symmetries. Universality in
multilayer networks was firstly explored in [3], where the eigenvector properties of the
corresponding adjacency matrix were shown to follow a simple scaling law. Comple-
mentarily, the spectral properties of multiplex networks have been recently explored
in [4–6]. In addition, de Arruda et al [7] reported a non-trivial relationship between
the eigenvalues of a relatively simple multiplex network composed of two layers. How-
ever, the analysis carried out in [7] mainly focused on the eigenvalues and their bounds
rather than eigenvectors, which may provide additional valuable information about the
network structure. Although here we focus on the analysis of the adjacency matrix in
multiplex networks, we must also remark that the spectral properties of the Laplacian
matrix were studied in [8–11] and were applied to the study of diffusion processes in
[12]. From the dynamical viewpoint, the concept of layer-localization in multiplex net-
works was introduced in [5]. That is, when a disease is on top of a multiplex network,
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it can be localized in one or a subset of layers. This phenomenon depends on the intra-
layer configurations and also on the coupling strength between layers. Moreover, it is
intrinsically linked to the localization properties of the eigenvectors of the network adja-
cency matrix, commonly measured by the inverse participation ratio (IPR). Although
this phenomenon was well-characterized in [5], the mechanism driving it was not fully
understood. In more technical words, the leading eigenvector of a multiplex network
can be in one of two different regimes as a function of the coupling parameter between
layers: layer-localized regime and delocalized regime. However, the precise definition
of the structural transition between those regimes, to the best of our knowledge, is still
lacking in the literature. Therefore, here we propose a definition for the transition point
between layer-localization to delocalization, showing that it can be used to collapse the
IPR curves in a wide range of network configurations. This collapsing also reveals the
universality of the transition. Finally, as an application, we analyze the disease spread-
ing on multiplex networks, providing a dynamical condition for the layer-localization to
the delocalization phase transition.

2. Universality of eigenvector delocalization

In its more general form, multiplex networks are composed by m layers [13–16]. Each
layer has at most n nodes which might have a counterpart in the other layers. Here, we
restrict to 2-layer multiplex networks (i.e. m = 2) where each layer has n nodes and each
node has a counterpart on the other layer. Formally, these networks can be represented
by the adjacency matrix A whose eigenvalue problem is given as[

A1 pI
pI A2

] [
v1

v2

]
= λ

[
v1

v2

]
= λv = Av, (1)

where A1,2 are the individual adjacency matrices, v1,2 are the respective sub-vector
components, p is the coupling weight, and ‖ v ‖= 1. Furthermore, we focus on the case
where there is layer dominance [6, 17], i.e. λ1 � λ2, where λ1 and λ2 are the leading
eigenvalues of the individual layers. As a consequence, the components of the leading
eigenvector of A2 should be relatively small, i.e. (v2)j ≈ 0. This can be easily seen using
perturbation theory, see e.g. [17].

In network theory [18–22], the IPR is commonly used to characterize the localization
features of a network [5, 24, 25]. It is defined as

IPR(v) =

N∑
i

v4
i . (2)

It is instructive to recall the IPR(v) behavior in single-layer networks. If the leading
eigenvector is fully delocalized, IPR(v) ∼ N−1, which is the case of ER networks above
the percolation transition. On the other hand, if IPR(v) ∼ N−δ, with δ < 1, then some
form of localization is present, which is the case of power-law (PL) networks, P (k) ∼ k−γ,

where IPR(v) ∼ N−(3−γ
2 ), as demonstrated in [23]. While, in the localized regime the

leading eigenvector is concentrated in one or a finite number of nodes and IPR(v) ∼
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Figure 1. (a) Contribution of the dominating and non-dominating network layers
to the IPR as a function of p for several 2-layer network configurations con-
sidering Erdös–Rényi (ER) and power-law (PL) layers. In (b), we present an
example, where the layer-localized and delocalized regimes are characterized by
log(IPRNDL(p < p∗)) ≈ α log(p) + c1 and log(IPRDL(p > p∗)) ≈ c2 (dashed and dot-
dashed lines), respectively, and the delocalization transition coupling p∗ is given as
the crossing of these two curves (vertical dotted line). Here α ≈ 4, c1 = −9.698 and
c2 ≈ 8.92× 10−6.

O(1). For the sake of notation, we denote the IPR of the dominating and non-dominating
layers as IPRDL and IPRNDL, respectively: IPRDL ≡ IPR(v1) and IPRNDL ≡ IPR(v2).
Furthermore, since A is a function of p, both, their eigenvalues and eigenvectors also
depend on p, therefore, IPR ≡ IPR(p). Consequently, by tuning p we can observe two
different eigenvector regimes characterized by the IPR [5]: (i) layer-localized, where,
as discussed in [5, 24], IPR ∼ O

(
1
m

)
and (ii) delocalized, where IPR ∼ O

(
1
nm

)
. This

statement is exemplified in figure 1(a) where, without loss of generality, we consider
homogeneous layers, so we cannot observe node localization. Next, we define p∗ as the
crossover point between the layer-localized and localized regimes. Thus, when p � p∗,
the eigenvector components are concentrated in a sub-extensive part of the eigenvector.
Such part of the eigenvector corresponds to the dominating layer. However, the density
of non-negligible eigenvector components corresponding to the non-dominating layer
increases with the coupling parameter p. Indeed, from figure 1(a), we observe that
in the localized regime, p < p∗, the IPR’s contribution of the non-dominating layer
can be characterized by a PL (i.e. a linear trend in log–log scale), that is, log(IPRNDL

(p < p∗)) ≈ α log(p) + c1 with α ≈ 4. We also verified that α is independent of N , while
c1 is dependent on the system size. Moreover, in the delocalized regime, p > p∗, the states
are evenly extended and do not change anymore with p and they are characterized by
log(IPR(p > p∗)) ≈ c2. In this regime, the inter-layer connections play the major role,
while the intra-layer connections can be interpreted as perturbations. Hence, all the
nodes contribute similarly to the leading eigenvector, making it delocalized. Therefore,
the coupling p∗, characterizing the delocalization transition, can be defined as the value
of p such that IPRNDL(p < p∗) = IPR(p > p∗). This is illustrated in figure 1(b). With
this prescription, we were able to systematically characterize the structural transition of
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Figure 2. (a) Scaling of the IPR with n, IPR ∼ n−δ, for both the minimum and
maximum values of p calculated: IPR(pmin) and IPR(pmax). In both cases we
estimated δ ≈ 1. The network sizes used here are n = 1× 103, 2× 103, 3× 103,
4× 103, 5× 103, 10× 103, 20× 103, and 30× 103. (b) Collapsing of the curves
IPR versus p by the use of IPR∗ = n× IPR (see (a)) and p′ = p/p∗. In the
homogeneous layer configurations (ER networks) we used all the combinations of
k1 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and k2 = {10, 20, 30, 40}. In the mixed
case, where one layer is an ER network and the other is a PL network, we considered
all the combinations of γ1 = {2.25, 2.5, 3.5} for the PL layer and k2 = {20, 30, 40}
for the ER layer.

the eigenvectors of our 2-layer network by means of the IPR. Importantly, figure 1 also
shows that different network configurations produce different IPR functions. Note that,
although all the curves have similar behavior, they are shifted in both axes. Aside from
the dependence of the IPR on p, it also depends on the system size as IPR(p,n) ∼ n−δ;
as shown in figure 2(a). Thus, for a fixed number of layers and in the thermodynamic
limit, both regimes scale similarly with δ ≈ 1 (see figure 2(a)). We remark that, in
the thermodynamic limit, both IPRNDL(p < p∗) and IPR(p > p∗) vanish, however, since
they obey the same scaling we are also able to define the structural transition in the
thermodynamic limit.

As a consequence of the IPR behavior described above, and taking into account
both the dependencies on the system size n and on the coupling parameter p (see also
[5, 24]), we define

IPR∗ = n× IPR, (3)

p′ =
p

p∗
. (4)

Under these scalings , all the IPR∗ versus p′ curves should collapse on top of a universal
curve. Indeed, the scaling of the IPR is shown in figure 2(b).

It is relevant to stress that the quantity driving the IPR scaling, for a fixed p and fixed
layer structure (i.e. the class of network considered), is the network size. For example,
the IPR of an ER single-layer network scales as n−1 and node-localization is absent
[23]. Furthermore, for PL networks, P (k) ∼ k−γ, depending on the value of γ, one can
observe different scaling laws that depend on n; namely, the network can present k-core
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Figure 3. Delocalization transition coupling p∗ as a function of the absolute
degree difference of the two layers forming the multiplex. The dashed line is
p∗ = β1〈k1 − k2〉+ β2, with β1 = 1.218 and β2 = 0.430. Same network parameters
as in figure 2.

or hub localization [23]. In multiplex networks, the layer-localization phenomena were
already discussed in [5], in the context of disease localization. There, it was shown that
the states could be localized in one or more layers. Moreover, in the multiplex case, p∗

depends on the layer configurations. For instance, note that considering a fixed value
of p, by changing the average degree of a layer in the multiplex, the eigenstates can
transit from localization to delocalization (the opposite is also true); see for example
figure 1. Thus, the universality shown in figure 2(a) could not be robust against the
inner configuration of the layers. We remark that this behavior is adjusted by rescal-
ing p as proposed in equation (4), as shown in figure 2(b). Moreover, a detailed study
of the IPR as a function of p, allows relating the structural properties of the multi-
plex with the delocalization transition coupling p∗. Interestingly enough, we found that
p∗ is approximately linearly described by the difference between the average degree of
the layers; that is

p∗ = β1|〈k1 − k2〉|+ β2, (5)

as can be clearly seen in figure 3 for a wide range of parameter combinations. This
relationship describes the change of the IPR curves with the inner configuration of the
layers. Surprisingly, despite the local structures that might appear inside the multiplex
(cycles), for the range of parameters studied, the average degree difference describes
reasonably well the eigenvector’s structural transition.

To the best of our knowledge, a definition of the eigenvector structural transition,
from layer-localization to delocalization, is not available in the literature. This concept
might seem natural at first glance, but, since there is no abrupt transition on the spectral
properties of the adjacency matrix nor a singularity to look for, a transition in the strict
sense is hard to define. In the following, we formalize this transition and provide a
definition for it. It is important to stress that this structural change, characterized by
the IPR∗, is continuous, and the IPR∗(p = p∗) does not vanish in the thermodynamic
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limit. This behavior contrasts with second-order phase transitions, where the transition
is associated with a divergence, and it gets better defined as the system size increases.
Here, in the layer-localization transition, measured by IPR∗, this phenomenon does
not occur. However, as we have two clearly defined regimes associated only with the
structure, layer-localized, and delocalized regimes, we call it a structural transition. We
also remark that a similar nomenclature was used on the analysis of the so-called abrupt
structural transition found in the Laplacian matrix [8–12]. Moreover, the adjacency and
the Laplacian matrices concern different dynamical processes. So, our interest here is
the adjacency matrix due to its relevance to the SIS epidemic spreading process.

3. Application to the SIS phase transition

In [5] it was shown that the disease spreading, more precisely the SIS model, on a
multilayer network might present a transition from layer-localization to delocalization.
This phenomenon depends on the layer configurations, as well as the spreading param-
eters [5]. Motivated by [25], the authors extended the concept of localization from node
localization to layer-localization. Here, by establishing IPR∗ as in equation (3), we go one
step further since this quantity does not vanish in the thermodynamic limit. Notably,
the most important contribution of our analysis regards the nature of the SIS transition
on multiplex networks. From the quenched mean-field (QMF) theory, where we assume
that the individual probabilities are independent, (see [5, 24]) we have

d

dt

[
y1

y2

]
= −μ

[
y1

y2

]
+ λ

⎡
⎣A1

η

λ
I

η

λ
I A2

⎤
⎦[

y1

y2

]
+O(y2), (6)

where the transition from a disease-free state to an endemic state occurs at the critical
point given by λc = μ/Λ1, with Λ1 being the leading eigenvalue of A, see equation (1),
and p = η/λ in our context. Therefore, p∗ = η/λc = ηΛ1. Moreover, we know that if
p > p∗ the eigenvectors of the multiplex are in the delocalized regime. Conversely, if
p < p∗ the eigenvectors show layer localization. We can now translate this condition
into the SIS epidemic spreading context. Thus, from the QMF theory, if

η >
p∗

Λ1

, (7)

where η is the inter-layer spreading rate, the disease is delocalized, and the whole multi-
plex is active. Notice that if equation (7) is not satisfied a transition from a disease-free
state to a layer-localized state is still present. Aside from that, note that the evaluation
of equation (7) is not trivial since p∗ and Λ1 depend on η. We also remark that, since
the delocalization transition is continuous, i.e. it is not characterized by a divergence on
a given derivative (see for instance figure 2, where the finite size effects are not present
and the curves for different network sizes collapse), the corresponding dynamics is also
expected to suffer a smooth transition. This is very relevant, because it might be easier
to study localization–delocalization transitions through spectral properties than from
dynamical properties, which usually involves more refined and cumbersome numerical
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Figure 4. Quasi stationary simulation of an SIS epidemic spreading. Susceptibility
χ (upper panels) and order parameter ρ (lower panels) as a function of λ, for
each layer. The multiplex network used in this simulation is composed by two ER
networks with 〈k〉 = 30 and 〈k〉 = 10. From the left to the right we have three
different structural regimes: (i) the layer-localized regime with η = 0.01, (ii) near
the structural delocalization transition point, ηΛ1 ≈ p∗ with η = 0.85, p∗ = 24.795
(from equation (5)) and Λ1 = 31.058, and (iii) the delocalized regime with η = 3.0.
The gray dashed lines mark the susceptibility peaks.

techniques. We also want to stress that an important consequence of the renormaliza-
tion defined in equations (3) and (4) is that they allow for the analysis of finite systems.
In other words, these definitions do not require the thermodynamic limit. For the sake
of rigor, however, we remark that a true critical point is properly defined only in the
infinite size limit.

Furthermore, in figure 4, we present Monte Carlo simulations using the quasi-
stationary algorithm [5, 24, 26, 27], where the absorbing state is avoided, conferring
a numerical validation to our analysis. Here we are interested in the order parameter,
and the susceptibility, defined as

ρ =
nI

N
(8)

and

χ =
〈n2

I 〉 − 〈nI〉2
〈nI〉

, (9)

respectively, where nI is the number of infected individuals, ρ is the average fraction of
individuals, and χ is the coefficient of variation of the number of infected individuals.
Importantly, in a second-order phase transition, χ presents a peak, and this peak diverges
in the thermodynamic limit [5, 24, 26, 27]. Besides, these quantities can also be defined
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considering the number of infected individuals in each layer individually, here denoted
by ρLayer and χLayer. From the structural viewpoint, we evaluate the dynamical response
of the SIS model on the different structural regimes: (i) the layer-localized regime,
ηΛ1 < p∗, (ii) near the structural transition point, ηΛ1 ≈ p∗ and (iii) the delocalized
regime, ηΛ1 > p∗. Note that, in the layer-localized regime, the epidemics play a role
similar to an external field for the non-dominating layer. Thus, the non-dominating
layer plays a minor role. This behavior can be observed in both, the order parameter
(for each layer) ρ, and the susceptibility (also calculated individually for each layer) χ,
see the left panels of figure 4. In the susceptibility curves, we can even see a second
peak, as predicted in [5]. As discussed before, the eigenvector transition from layer-
localization to delocalization is not a sharp transition. This is also illustrated in the
middle panels of figure 4. In the transition regime, a small change in η does not imply
an important change of behavior. Note that at the critical point (peak of susceptibility),
the fraction of infected individuals, ρ, is similar in both layers. Besides, these two curves
have different growth rates for larger values of λ. Finally, in the right panels of figure 4,
we present the delocalized structural regime, where the curves of χ and ρ are practically
the same for both layers. In this regime, as we increase η, we are also increasing the
leading eigenvalue of A and, thus, moving the critical point to the left. Therefore for
large η, using perturbative analysis, we can interpret the block diagonal matrices as a
perturbation on the off-diagonal ones.

4. Conclusions

In this paper, we have formalized the layer-localization to delocalization transition
in bilayer multiplex networks. This process was already anticipated in [5]; however,
a proper definition was lacking. In the latter study, the different structural regimes
(layer-localized and delocalized) were characterized, but the transition point between
them was not defined. In order to properly define the transition, we first performed a
scaling analysis of the IPR of the eigenvectors of the adjacency matrix of the bilayer
multiplex network as a function of the parameter associated to the coupling between
the layers. Furthermore, we also found a linear relationship between the delocaliza-
tion transition point, p∗, and the difference of the average degree between the layers.
We remark that this relationship is valid for the set of parameters evaluated here.
That is, for homogeneous-layer settings and mixed-layer settings both with a reason-
ably high average degree, since in order to observe layer-localization, layer dominance is
needed.

Finally, we have also applied our results on the universality of layer delocalization to
the disease spreading. By using the QMF approach, we were able to define a criterion
for disease layer-localization, which was validated through Monte Carlo simulations.
This constitutes a step towards a better understanding of the delocalization transition
reported for disease dynamics on multilayer networks [5]. We hope that our work could
also motivate further research on the impact of the layer delocalization transition in
dynamical processes, as well as on the universality of other properties of multiplex
networks.
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