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Role of time scale in the spreading of asymmetrically interacting diseases
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Diseases and other contagion phenomena in nature and society can interact asymmetrically, such that one
can benefit from the other, which in turn impairs the first, in analogy with predator-prey systems. Here, we
consider two models for interacting diseaselike dynamics with asymmetric interactions and different associated
time scales. Using rate equations for homogeneously mixed populations, we show that the stationary prevalences
and phase diagrams of each model behave differently with respect to variations of the relative time scales. We
also characterize in detail the regime where transient oscillations are observed, a pattern that is inherent to
asymmetrical interactions but often ignored in the literature. Our results contribute to a better understanding of
disease dynamics in particular, and interacting processes in general, and could provide interesting insights for
real-world applications.
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I. INTRODUCTION

Spreading processes are ubiquitous in nature and society.
A primary example of these phenomena is the propagation
of diseases in human and animal populations [1,2]. Despite
many recent advances in the theoretical, computational, and
data-driven modeling of diseases, there are still many sci-
entific problems that remain open. Two such problems are
currently of high relevance. On the one hand, we have many
limitations when it comes to understanding the effects of
mobility restrictions and human behavioral changes on the
evolution of a disease [3]. On the other hand, there are many
diseases that rarely evolve in isolation; on the contrary, diverse
viral strains or different pathogens can either compete for the
susceptible population or establish cooperative interactions,
both at a population level and inside a host organism [4]. This
paper focuses on studying spreading processes with the aim
of shedding some light on the second kind of challenge.

Early works on interacting diseases [5–9] have modeled
the dynamics of pathogens or strains that interact competi-
tively, showing that their coexistence is not always possible.
In the last years, these models have been adapted to net-
works [10–16], including single-layer and multiplex networks
[2,17], as well as metapopulations [14]. These works have
shown that the network organization plays a fundamental role
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in the evolution of the dynamical processes, affecting the
epidemic threshold and prevalence (e.g., Ref. [18]). Recently,
the focus has also been placed on collaborative contagion, in
which there is a positive feedback between diseases [19–26].
In these models, discontinuous phase transitions, in which the
prevalence goes from zero to a finite value abruptly, have
been observed, as well as simultaneous stability of two epi-
demic states. It is worth remarking that although the network
topology can generate important phenomena, some essential
properties can still be observed in homogeneously mixed pop-
ulations, as demonstrated by Chen et al. [25].

General models for interacting diseases have also been
developed recently. This is the case in Ref. [27], where
the authors introduced a generic model for two interact-
ing diseases in multiplex networks, comprising the cases of
competitive, collaborative, and asymmetrical interactions, for
both susceptible-infected-susceptible (SIS) and susceptible-
infected-removed (SIR) compartmental models. They cal-
culated the respective epidemic thresholds and studied the
prevalence for both the competitive and the collaborative sce-
narios. More recently, this model inspired a Markov chain
approach [28]. In all works, however, the asymmetrical case
has remained unexplored.

Asymmetrical interactions occur in many complex sys-
tems. For example, there are reported cases of HIV viral
load suppression by the presence of some other pathogens
[29–31], which suggests an asymmetrical interaction between
HIV and many diseases. Asymmetrical interactions have been
studied mostly in the case of the interplay between epi-
demic and awareness [18,32–37], malicious computer worms
and spreading countermeasures [38–41], and antigens and
immune system agents [42–44], among other examples. In
the case of disease and awareness, the epidemic stimulates
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information awareness, which in turn tends to reduce the
exposure to disease and therefore also disease prevalence,
configuring an asymmetrical interaction between the two pro-
cesses. It has been shown that, in general, the awareness
can effectively reduce the disease prevalence and increase
its threshold [32,33]. The epidemic, in turn, can sustain
an information outbreak even when the latter is below its
“independent” threshold [18,34]. Correlations and structural
properties of the underlying multiplex network can also influ-
ence this propagation process [18,32,34].

As mentioned above, some previous works have examined
asymmetrically interacting spreading phenomena. However,
this has been done for specific cases, and a general descrip-
tion of these processes is, to the best of our knowledge, still
missing. Of special interest is the fact that the interacting
dynamics can do so at different time scales, whose effect
has not been deeply investigated yet. Changes in the relative
time scale (i.e., the possibility that one process has a different
intrinsic clock concerning the other) typically do not change
the qualitative behavior of interacting systems but often lead
to relevant quantitative effects. For example, Karrer and New-
man [11] showed that for competing SIR diseases, the slower
pathogen may take advantage and even win the competition
due to its inherent time scale. Oliveira and Dickman [45]
also showed that the slower species can win a competition
in a contact process (CP), including scenarios with periodic
and stochastic environmental variations. In the context of
asymmetrical interactions, Wu et al. [44] and Poletto et al.
[46] demonstrated that the epidemic threshold is affected by
changes in the recovery rate when the reproductive number
(the ratio between the spreading and the recovery rates) is kept
constant, which is equivalent to a variation of the time scale.
Equivalently, it has also been shown that a slower information
awareness may have more impact on the epidemic prevalence
than a faster one [36,37]. Therefore the development of a more
general understanding of the influence of the relative time
scales of asymmetrically interacting diseaselike models is of
great interest.

In this paper, we study two SIS-like models for in-
teracting diseases when they are in an asymmetrically
interacting regime over homogeneously mixed populations
and continuous-time evolution. We rely on the most simple
setup that does not involve structured populations to extract
the intrinsic properties of the models. In each model, we
assign a parameter π that allows us to control the relative
time scale between the two dynamics while keeping constant
the epidemic forces of each disease. We adopt a descriptive
analysis of each model, determining whether different aspects
are or are not influenced by the time scale, including the
respective phase diagrams, coexistence, and oscillatory be-
havior. We also compare both models and discuss our results
in the light of some previous works.

II. EPIDEMIC MODELS WITH ASYMMETRICAL
INTERACTION

In what follows, regardless of the model considered, we
assume that there are two diseases that interact. Moreover,
we consider that disease I is the “prey” (it is impaired by
the other disease) and disease II is the “predator” (it is ben-

efited from the presence of the first disease), in an analogy
with the asymmetrical interaction of predator-prey systems.
A parameter π controls the relative time scale between the
two diseases. It is implemented as follows: The rates of all
processes promoted by disease I are multiplied by (1 − π ),
whereas the rates of disease II processes are multiplied by π .
Making π range between 0 and 1, we sweep through scenarios
in which disease I is faster (π < 0.5) or slower (π > 0.5) than
disease II, as well as the balanced case (π = 0.5). Although
π does not add a new degree of freedom to the model, the
advantages of using this approach are as follows: (i) It allows
us to control the relative time scale with a single parameter;
(ii) the “overall rate” of the system, which can be regarded
as ∼[(1 − π ) + π ], is kept constant when varying π ; and (iii)
plotting variables as a function of π is simple because it is
limited between 0 and 1. Let us now describe each of the
models scrutinized in the rest of the paper.

A. Model A: Interacting diseases through susceptibility change

In this variant, we consider that the presence of one disease
impairs the spreading of the second one by changing the in-
dividual’s susceptibility to catch the other disease. It has been
used to describe the dynamics of competing pathogens with
partial cross immunity [9] and for collaborative contagion
[25,27], but its asymmetrical version is still largely unex-
plored. The latter regime is a prototypical model to describe
processes in which an epidemic coexists with an information
dynamics in which awareness regarding the disease plays a
role in the spreading of it. Indeed, our model A is mathemati-
cally similar to models used for that purpose [37].

In this model, each individual can either be susceptible to
both diseases (S1S2), infected by one disease and susceptible
to the second one (I1S2) or (S1I2), or infected by both diseases
(I1I2). Note that we denote as I1 and I2 individuals that are in-
fected by disease I and II, respectively, regardless of their state
with respect to the other disease. For completely susceptible
individuals S1S2, the baseline contagion rate of disease I (II)
when in contact with an individual infected by disease I (II)
is β1 (β2). For individuals already infected by disease I but
susceptible to disease II (I1S2), the contagion rate for disease
II is �2 · β2; that is, it is multiplied by a factor �2. The same
holds for S1I2 individuals, for which the contagion rate by
disease I is changed to �1 · β1. The healing rates from disease
I and II are μ1 and μ2, respectively, and are not affected by the
other disease. We also define λ1 = β1/μ1 and λ2 = β2/μ2,
which are the basic reproduction numbers of each disease as
if they were independent. Figure 1 represents all the possible
transitions for this model, with their respective time scale
factors as explained before.

The asymmetrical interaction between the two diseases can
be obtained by setting 0 � �1 < 1 and �2 > 1. This means
that individuals that hold disease II are less susceptible to
catch disease I in comparison with fully susceptible individ-
uals. On the other hand, individuals infected by disease I are
more likely to catch disease II. Therefore disease I enhances
the propagation of disease II, whereas disease II impairs the
propagation of disease I. We represent the density of individ-
uals in a given state X by ρx, with X being either a composite
state (such as I1S2) or a simple state (such as I2). Based on the
diagram from Fig. 1, the time evolution of the composite state
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FIG. 1. State transitions allowed in model A. The baseline in-
fection and healing rates of disease I (II) are β1 (β2) and μ1 (μ2),
respectively. �1 (�2) represents the modification to the baseline trans-
mission rate of disease I (II) due to the presence of the other disease
in the host. In addition, each rate is multiplied by its corresponding
time scale factor: (1 − π ) for processes of disease I and π for disease
II.

densities is given by the following equations:

dρs1s2

dt
= −(1 − π )β1ρs1s2ρi1 − πβ2ρs1s2ρi2

+(1 − π )μ1ρi1s2 + πμ2ρs1i2 ,

dρs1i2

dt
= −(1 − π )�1β1ρs1i2ρi1 + πβ2ρs1s2ρi2

+(1 − π )μ1ρi1i2 − πμ2ρs1i2 ,

dρi1s2

dt
= +(1 − π )β1ρs1s2ρi1 − π�2β2ρi1s2ρi2

−(1 − π )μ1ρi1s2 + πμ2ρi1i2 ,

dρi1i2

dt
= +(1 − π )�1β1ρs1i2ρi1 + π�2β2ρi1s2ρi2

−(1 − π )μ1ρi1i2 − πμ2ρi1i2 .

The densities are yet subject to the normalization constraint
ρs1s2 + ρs1i2 + ρi1s2 + ρi1i2 = 1. This constraint makes the sys-
tem effectively three dimensional. One can reduce the number
of equations and simplify the notation by using the following
variable change (as done in Ref. [25]):

u = ρi1 = ρi1s2 + ρi1i2 ,

v = ρi2 = ρs1i2 + ρi1i2 ,

w = ρi1i2 ,

for which the dynamical equations are

u̇ = (1 − π )[β1(1 − u) + (�1 − 1)β1(v − w)

−μ1]u, (1)

v̇ = π [β2(1 − v) + (�2 − 1)β2(u − w) − μ2]v, (2)

ẇ = (1 − π )[�1β1(v − w)u − μ1w]

+π [�2β2(u − w)v − μ2w]. (3)

FIG. 2. State transitions of model B. Infection and healing rates
of disease I (II) are β1 (β2) and μ1 (μ2), respectively. I1 individuals
can be (super)infected by disease II with rate αβ2. Each rate is
multiplied by its corresponding time scale factor: (1 − π ) for disease
I processes and π for disease II processes.

B. Model B: Competing diseases with superinfection

Model B constitutes a modification of models of compet-
ing strains, in which a host cannot have the two diseases
at the same time. This could be achieved from model A by
setting �1 = �2 = 0. However, we also allow the in-host dis-
ease replacement via superinfection: If an individual infected
by disease I contacts another individual infected by disease
II, the first can also become infected by disease II, which
immediately replaces disease I in the host. The other way
around, from disease II to I, is not possible. Superinfection
is a phenomenon that is claimed to occur for some diseases
such as HIV [47–49] and bacterial pathogens [50], although
it does not necessarily lead to in-host replacement of the
first infection. There is a considerable amount of work on
epidemic models with superinfection, both with homogeneous
populations [51–54] and with complex networks [42–44] and
including other realistic aspects such as demography. Beyond
epidemiological examples, the present model could abstract
the interaction between computer viruses and the spreading
of antimalware, or the dynamics of fake news and fact-
checking messages. In such scenarios, either the antimalware
or the fact-checked message replaces the previous “infectious
agent.” We also note that our model is a particular case of the
model discussed in Ref. [44] and can also be interpreted as a
generalized predator-prey model [55].

Specifically, in model B, we represent susceptible individ-
uals simply by S and infected individuals of diseases I and II
by I1 and I2, respectively. The transmission rates are β1 and
β2, the healing rates are μ1 and μ2, and the rate at which I1

individuals are “superinfected” by disease II when exposed
to I2 individuals is given by a modified term α · β2. As in
model A, each term is also multiplied by the corresponding
time scale factor [(1 − π ) for disease I and π for disease II],
and also λ1 = β1/μ1 and λ2 = β2/μ2 are the basic reproduc-
tion numbers of the independent diseases. The transitions are
schematically represented in Fig. 2. Despite the competitive

013146-3



VENTURA, MORENO, AND RODRIGUES PHYSICAL REVIEW RESEARCH 3, 013146 (2021)

aspect of the model, one can generate an asymmetrical inter-
action by setting α > 1. This is because I1 individuals, in this
case, are more easily infected by disease II than susceptible
ones, meaning that the spreading of disease II is enhanced by
the presence of disease I, which in turn is at a disadvantage
due to the competition with disease II.

Using the same notation as before, ρx, for the density of
individuals in state X, we write the dynamical equations

dρs

dt
= −(1 − π )β1ρsρi1 − πβ2ρsρi2 + (1 − π )μ1ρi1

+πμ2ρs,

dρi1

dt
= (1 − π )β1ρsρi1 − παβ2ρi1ρi2 − (1 − π )μ1ρi1 ,

dρi2

dt
= πβ2ρsρi2 + παβ2ρi1ρi2 − πμ2ρi2 ,

where the normalization constraint is ρs + ρi1 + ρi2 = 1. As
in model A, we make the change of variables u = ρi1 , v = ρi2
to obtain the reduced set of dynamical equations

u̇ = (1 − π )[β1(1 − u − v) − μ1]u − παβ2uv, (4)

v̇ = π [β2(1 − u − v) − μ2]v + παβ2uv. (5)

III. RESULTS

A. Phase diagrams

In the asymmetrically interacting regime, models A and
B share a common feature: For any given set of parameters,
there is exactly one stable fixed point within the region of
the phase portrait that corresponds to physically possible solu-
tions. Therefore, unlike what has been reported for mutually
competitive or cooperative scenarios [25,51], our models do
not present bistability [56]. This is intrinsic to the positive-
negative feedback of the asymmetric interaction between the
diseases. Both models A and B present four phases, separated
by transcritical bifurcations: P1, no disease; P2, disease I only;
P3, disease II only; and P4, coexistence of both diseases. Here,
we investigate the λ1 × λ2 phase diagrams, setting the other
parameters to fixed values. Figure 3 shows the phase diagrams
for both models.

Through a stability analysis, we can obtain the phase tran-
sition curves of both models. The boundary between phases
P2 and P4 in model A is expressed as

1

λ2
= 1 + (�2 − 1)

(
1 − 1

λ1

)
, λ1 > 1, (6)

whereas, by the symmetry of the model, the boundary between
phases P3 and P4 is given by

1

λ1
= 1 − (1 − �1)

(
1 − 1

λ2

)
, λ2 > 1. (7)

From Eq. (7), we can check that when �1 = 1 (i.e., no
interaction), the boundary between phases P3 and P4 is a
vertical line. On the other limit, for �1 = 0, the boundary
becomes the identity line λ1 = λ2.

The other two bifurcations are trivial and are given by λ2 =
1 for 0 � λ1 � 1 (boundary between P1 and P3) and λ1 = 1
for 0 � λ2 � 1 (boundary between P1 and P2). It is worth

FIG. 3. Phase diagrams of models A [(a1)–(a3)] and B [(b1)–
(b3)], for three different values of the time scale parameter π . The
phases are as follows: P1, no disease; P2, disease I only; P3, disease
II only; and P4, coexistence. For model B, the dotted lines indicate
the (λ1, λ2) values used in Fig. 4. Inside the coexistence region, there
is also the possibility of damped oscillations, quantified by the Q fac-
tor defined in Eq. (10) and exhibited here as a green scale. The points
of the oscillatory region mesh are calculated in steps of ≈0.033 units
in λ1 and λ2 and then smoothed with bicubic interpolation. Other
parameters are set to �1 = 0.20, �2 = 3.0 and α = 2.0.

noticing that for model A, none of the phase transition curves
depends on the time scale parameter π .

The phase transition curves have similar shapes to those
reported in other works using single-layer and multiplex [27]
networks, which shows that such feature is essential to the
model itself. It can also be shown that the transition curves
between P1 and P2 and between P3 and P4 are equivalent to
the curve between healthy and endemic phases in a model for
epidemics with awareness [32].

For model B, the boundary between P2 and P4 is given by

1

λ2
= 1 + (α − 1)

(
1 − 1

λ1

)
, λ1 > 1, (8)
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which is similar to that in Eq. (6), only replacing �2 by α. The
boundary between P3 and P4 is expressed as

λ1 = [αχ (λ2 − 1) + 1]λ2, λ2 > 1, (9)

where we define χ (interpreted as the time scale ratio between
diseases II and I) as

χ = πμ2

(1 − π )μ1
.

The trivial boundaries of region P1 with regions P2 and P3 are
the same as in model A. Notice, however, that the parameter
χ depends increasingly on the time scale parameter π , and
so does the critical λ1 value from Eq. (9). This means that
as π increases (i.e., when disease II propagates on shorter
time scales), the phase transition between P3 and P4 moves
to lower values of λ2, contracting the region of coexistence
and approaching the horizontal line λ2 = 1 as π → 1 (notice
that χ diverges). Therefore, in this model, a faster clock for
disease II makes it more effective to suppress disease I. This
is an interesting result that might be used to control the preva-
lence of disease (or any other “infectious agent”) in the host
population. In the limit of π → 0, the transition between P3
and P4 becomes the identity line λ1 = λ2. The π dependence
of the phase diagrams of model B constitutes an important
difference with respect to model A and was already reported
by Wu et al. [44] as a dependency on the recovery rate when
keeping the ratios β/μ constant.

The reason for such difference in model B is the existence
of superinfection, which is a process of disease II that modifies
the state of an individual for both diseases. In contrast, for
model A, the processes of a given disease can only change its
own states, making the relative time scale irrelevant near the
phase transitions.

B. Behavior of the stationary prevalence

In the phase of coexistence (region P4 of the phase di-
agrams), both models present a single stable fixed point,
for which u, v �= 0. One can use the dynamical equations
[Eqs. (1)–(3) for model A and Eqs. (4) and (5) for model B] to
derive analytical expressions for the prevalences at the coexis-
tence fixed point. The derivation and the final expressions are
shown in Appendix A. As expected, the stationary prevalence
of each disease is a nondecreasing function of its reproduction
ratio λ = β/μ, when considering other parameters as fixed.
However, the dependence of the prevalences with the relative
time scale parameter π is not trivial and is different in each
model.

Figure 4 shows the basic behavior of the fixed point preva-
lences with π for models A and B. While the prevalence v of
disease II decreases with π for both models, the prevalence
u of disease I has opposite behaviors in each of them. In
model A, the prevalence w of coinfection increases with π .
This variant shows the same behavior (if equating disease
II with the information) as recently reported in some works
on epidemics with awareness [36,37] in complex networks;
namely, a faster relative clock of the information induces an
increase in the disease prevalence. For model B, however, the
behavior is the opposite: The prevalence of disease I decreases
with π . Considering also how the time scale parameter distorts

FIG. 4. Stationary values of the prevalences as a function of π

for (a) model A and (b) model B. For both models, λ1 and λ2 are
set to 1.7 and 1.1, respectively. Other parameters are set to �1 = 0.5,
�2 = 2.5 in (a) and α = 2.0 in (b).

the phase diagram of model B [see Fig. 3, where the (λ1, λ2)
values used in Fig. 4 are indicated by dotted lines], we see that
a faster clock of the “predator” process (disease II) effectively
decreases the spreading of the “prey” process, leading to its
extinction if λ2 > 1 and for sufficiently large π . Therefore
the relationship between the prevalences and the relative time
scale in asymmetrically interacting spreading phenomena is a
feature that depends on the specific shape of the considered
model.

In Figs. 5 and 6, we further analyze the behavior of the
prevalences with π and the parameters that control the in-
teractions: �1, �2 for model A and α for model B. We first
notice that the increasing or decreasing trends with respect

FIG. 5. Values of the stationary prevalences of disease I [(a) and
(c)] and disease II [(b) and (d)] for model A, plotted as functions of
π , �1, and �2. In (a) and (b), �2 is fixed to 2.5, whereas in (c) and
(d), �1 is fixed to 0.4. The reproduction ratios are set to λ1 = 1.70
and λ2 = 1.2.
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FIG. 6. Stationary prevalences of (a) disease I and (b) disease II
for model B, plotted as functions of π and α. The reproduction ratios
are set to λ1 = 1.7 and λ2 = 1.2.

to π , as observed in Fig. 4, are not changed for different
values of the interaction parameters: Disease I increases while
disease II decreases with π for model A (Fig. 5), whereas both
prevalences decrease with π for model B (Fig. 6). To rule out
the possibility that there is a region of the parameter space
in which the reported behaviors with respect to π might be
different, we show in Appendix B that this is not possible, i.e.,
that the behavior with π is always the same for each model in
the coexistence region.

We can also analyze how the prevalences vary with
changes in the interaction parameters. For model A (Fig. 5),
we see that an increase in �1 increases both the prevalences of
disease I [Fig. 5(a)] and II [Fig. 5(b)]. This is expected, as a
greater �1 value means a weaker impairing of the propagation
of disease I, which is beneficial for both diseases (as disease
II benefits from disease I). On the other hand, an increase in
�2 causes a decrease in disease I [Fig. 5(c)] and an increase in
disease II [Fig. 5(d)]. This is also expected, as a larger value
of �2 means a greater benefit to disease II, which in turn is
detrimental to disease I. Therefore, for model A, the effect
of the two interaction parameters in each disease’s prevalence
is intuitive and predictable. The effects are also numerically
influenced by the time scale π , yet not qualitatively changed.

However, for model B, which has a single interaction pa-
rameter α, the behavior of the prevalence is not trivial. From
Fig. 6, we see that while disease I prevalence [Fig. 6(a)] is
always reduced with an increase in α, the behavior of the
prevalence of disease II [Fig. 6(b)] with α is not uniform
and may have an optimal value that depends on π . This
happens because the superinfection transition, controlled by
α, is simultaneously beneficial to disease II and detrimental
to disease I. Thus, as seen from model A, an increase in α

certainly reduces the prevalence of disease I but has a “con-
flicting” effect on the prevalence of disease II. While a value
of α close to 1 means almost no benefit to disease II from
disease I, a large value α � 1 means an excessive “predation”
from disease II; therefore there exists an optimal intensity of
the interaction α. This is further illustrated in Fig. 7, where we
show the prevalence of disease II in model B as a function of
α, for different values of π . As can be seen, there is an optimal
value of α that maximizes the prevalence, for fixed values of
the other parameters.

FIG. 7. Stationary prevalences of disease II for model B, plotted
as a function of α and for different values of π . The dashed line
represents the optimal value of α and its corresponding v as π is
continuously changed. The other parameters are set to β1 = 1.7,
β2 = 1.2 and μ1 = μ2 = 1.

C. Damped oscillations: Node versus spiral point

Some predator-prey systems, which naturally have an
asymmetrical relationship between two processes, are known
to present stable closed orbits (i.e., sustained oscillations)
[55]. For both epidemic models addressed in our work, there
are no closed orbits in the physical region of the phase portrait
[57]. However, in the coexistence phase (region P4), the stable
fixed point can be either a node or a spiral point. In the
second case, the transient dynamics of the system towards
the fixed point may present some damped oscillations. The
presence of such local oscillations is determined by the imag-
inary part of the eigenvalues of the model’s Jacobian matrix,
calculated at the stable fixed point. For model B, which is
two-dimensional, the Jacobian’s eigenvalues σ1, σ2 can either
be both real or be complex conjugate to each other. For model
A, which is three dimensional, the 3 × 3 Jacobian matrix can
either have none or have two nonreal conjugate eigenvalues.
For both models A and B, one can use the quantity

Q = max
i=1,...,d

(∣∣∣∣ Im(σi )

Re(σi )

∣∣∣∣
)

, (10)

to measure the “quality factor” of the oscillations when
Re(σi ) �= 0 ({σi} are the eigenvalues of the Jacobian at the
fixed point, and d is the dimensionality of the system). This is
because the imaginary part is responsible for the oscillations
and the real part is responsible for the damping; thus the
imaginary-to-real part ratio measures the propensity of the
system to oscillate around the fixed point.

In Fig. 3, together with the regular phases of the model,
we show in (color-coded) green the numerically calculated
values of Q. The coexistence phase can thus be subdivided
according to the existence of a nonreal Jacobian eigenvalue:
Within the white regions, the eigenvalues are real and the fixed
point is a node, whereas in the green areas, the fixed point is a
spiral point and there may occur oscillations around it. Notice
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FIG. 8. Time evolution of model B prevalences for two different
conditions: (a) π = 0.1, for which Q = 0, meaning that there are no
local oscillations around the fixed point, and (b) π = 0.9, for which
Q = 3.65 and the system oscillates before converging to the steady
state. Other parameters are set to β1 = 1.20, β2 = 0.98, μ1 = μ2 =
1.0, and α = 2.0. The initial fraction of infected individuals is set to
0.01 for both diseases.

that for both models A and B, the shape of the spiral point
region depends considerably on the time scale parameter π .
Greater values of π seem to shrink the oscillatory region and
reduce the values of Q for model A, but the opposite appears
to happen with model B. Furthermore, we show the difference
between a node and a spiral point in Fig. 8, in which the time
evolution of the prevalences of model B is shown for two situ-
ations: one with Q = 0 [hence no local oscillations; Fig. 8(a)]
and another with Q = 3.65 [thus there are damped oscillations
before reaching the steady state; Fig. 8(b)]. Interestingly, we
only had to change the relative time scale parameter π to
switch between the two situations.

An important fact is that damped oscillations can only
occur when the interaction between the diseases is asymmet-
rical, for both models A and B. For model A, we numerically
check this by observing that the oscillatory region of the
phase diagram shrinks and disappears as �1 or �2 leaves
the region for which interactions are asymmetric. For model
B, it can be shown that the Jacobian’s eigenvalue equation
(which is quadratic) can only assume nonreal solutions if
α > 1. Finally, we note that despite that our deterministic
formulation predicts that the oscillations are always damped,
stochasticity—which is intrinsic to real-world systems and is
inherent when performing Monte Carlo simulations—could
cause such oscillations to last for the long term, as small
perturbations to the prevalences could recover the oscillatory
pattern.

IV. CONCLUSIONS

In this paper, we have studied two minimalist models
for interacting diseases in the asymmetrical regime, for ho-
mogeneously mixed populations and with continuous-time
evolution. We focus on the influence of the relative time
scale between the two diseases. The simplicity of our frame-
work not only provides us with analytical tractability but also
reveals the fundamental properties of asymmetrically interact-
ing contagion. The models are simple enough to be applied to
different situations, and the choice for two models is justified

by our goal of achieving a more general understanding of
interacting processes.

Model A is a mathematical prototype for an epidemic with
awareness and the possible asymmetrical interaction between
HIV and some specific diseases [29–31]. Our results show
that despite the epidemic thresholds not being affected by
the time scale parameter π , the prevalence is influenced in a
nonintuitive way: The “prey” disease (disease I) has greater
prevalence when the “predator” disease (disease II) has a
faster time scale. This behavior is in consonance with previous
works on epidemics with awareness in complex networks
[36,37], suggesting that it may be intrinsic to this class of
models. If we take HIV, which naturally has a long time scale
for its development, detection, and treatment, as an example,
this means that the information awareness (which is more
quickly transmitted and forgotten) may not be as efficient as it
could be due to its shorter time scale.

Model B, which is inspired in situations such as computer
viruses and spreading countermeasures [38–41] or fake vs
fact-checked news, has a different behavior with the relative
time scale: If the “predator” disease (disease II) has a faster
clock, both prevalences of diseases I and II decay, with the
possibility of disease I eradication [see Fig. 4(b)]. The inter-
pretation then varies according to the situation being modeled.
For example, if the main “goal” of disease II is to fight the
other disease (such as fact-checking against fake news), then a
shorter time scale (higher π ) is desirable. If, however, the goal
is to maximize disease II prevalence by taking advantage of
disease I (one can imagine a computer virus that makes use of
vulnerabilities generated by another one), then a longer time
scale for disease II is preferable. This result is compatible with
the analysis made by Wu et al. [44] using a heterogeneous
mean field in a single-layer network.

Another interesting phenomenology revealed is the behav-
ior of model B with its superinfection parameter α, which
controls the interaction between diseases I and II in both
directions. The interpretation again depends on the situation:
If the goal is to minimize disease I, then a greater value of α is
always better, whereas for the optimization of the prevalence
of disease II an intermediate value of α (which depends on
π ) should be sought. Finally, we have shown that oscillatory
behavior, which is a well-known feature of predator-prey sys-
tems, is also present in asymmetrically interacting epidemic
models and that its expression crucially depends on the rel-
ative time scale. Although the theory predicts that they are
strongly damped, real-world systems could persistently dis-
play such oscillations due to random fluctuations.

To round off, we note that apart from the above connec-
tions to real dynamical systems, we expect that our work
helps future studies of asymmetrically interacting spreading
phenomena by providing general guidelines. By studying two
different models, we provide a more general understanding
of such systems, but we recognize that the results may have
some bias due to the specific choice of models. An interesting
extension of our work would be to consider a broader family
of models, using more generic formulations, and determine,
for example, the conditions that make the prevalences depend,
in one way or another, on the time scale. Finally, we also ex-
pect some variations when these models are studied on top of
structured populations. For such scenarios, our results provide
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a baseline of which qualitative and quantitative patterns are
not associated with a network effect.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR THE
COEXISTENCE FIXED POINT

The coexistence phase is characterized by the long-term
presence of both diseases, thus having u, v > 0 in the steady
state. In this Appendix, we show how to analytically calculate
the prevalences for the coexistence fixed points of both mod-
els. For simplicity of notation, throughout Appendixes A and
B we use u, v, and w to denote the fixed point values of the
prevalences (and not their time-dependent functions).

1. Model A

We find the fixed points by setting u̇ = v̇ = ẇ = 0 in the
dynamical equations (1)–(3). Using the fact that u, v > 0 at
the coexistence, we divide Eq. (1) by (1 − π )μ1u, Eq. (2)
by πμ2v, and Eq. (3) by (1 − π )μ1, obtaining the following
reduced system of equations:

0 = λ1[1 − u + (�1 − 1)(v − w)] − 1, (A1)

0 = λ2[1 − v + (�2 − 1)(u − w)] − 1, (A2)

0 = λ1�1(v − w)u − w + χ [λ2�2(u − w)v − w], (A3)

in which only Eq. (A3) is nonlinear. The disease II time scale
factor χ is the same as defined in Eq. (10). Using also the
definition

si = 1 − 1

λi
, i = 1, 2, (A4)

where si is the solution for a noninteracting SIS model with
reproduction ratio λi, we can further simplify Eqs. (A1) and
(A2) to

u − (�1 − 1)(v − w) = s1, (A5)

v − (�2 − 1)(u − w) = s2, (A6)

respectively, from which it is intuitive to see that the interac-
tion between the diseases (represented by �1 and �2) causes a
deviation from the noninteracting solution.

At this point, we split the solution into two cases: (a) the
simpler case �1 = 0 (i.e., when disease II completely inhibits
infection by disease I) and (b) the more general case �1 > 0.

a. Case �1 = 0

In the case where �1 = 0, Eq. (A5) simplifies to

u − w = s1 − v. (A7)

Combining this equation with (A6), we get a 2 × 2 system
for v and (u − w), for which the solution is

v = s2 + (�2 − 1)s1

�2
, (A8)

u − w = s1 − s2

�2
. (A9)

Now using that �1 = 0 in Eq. (A3), we obtain an expres-
sion for w in terms of known variables:

w = χ

1 + χ
λ2�2(u − w)v. (A10)

Plugging Eqs. (A8) and (A9) into the above equation and
then using it back to Eq. (A9), we get the full expressions for
the fixed points when �1 = 0:

u = s1 −
[

1 − χ

1 + χ

s1 − s2

1 − s2

][
s2 + (�2 − 1)s1

�2

]
, (A11)

v = s2 + (�2 − 1)s1

�2
, (A12)

w = χ

1 + χ

s1 − s2

1 − s2

[
s2 + (�2 − 1)s1

�2

]
, (A13)

where we have also replaced λ2 = 1/(1 − s2). With some
analysis of the above expressions, noticing that χ/(1 − χ ) is
an increasing function of χ > 0, we can infer that u and w

increase with χ (and thus with π ), whereas v does not depend
on the time scale factor. This is in agreement with the plots in
Figs. 5(a) and 5(b).

b. Case �1 > 0

In the case where �1 > 0, the fact that Eq. (A3) is quadratic
on its variables cannot be avoided. Our strategy is to use
Eqs. (A1) and (A2) to write u, v, (u − w), and (v − w) as
functions of the variable w and the model parameters. This
can be used in Eq. (A3) to find the solution for w and, conse-
quently, for the other variables.

We can isolate v in Eq. (A6) and apply it to Eq. (A5),
obtaining

u = m[P12 − (�1 − 1)�2w], (A14)

v = m[P21 − (�2 − 1)�1w], (A15)

where we simplified the notation using the definitions

P12 = s1 + (�1 − 1)s2, (A16)

P21 = s2 + (�2 − 1)s1, (A17)

m = 1/[1 − (�1 − 1)(�2 − 1)]. (A18)

We can also manipulate Eqs. (A14) and (A15) to obtain

u − w = m[P12 − �1w], (A19)

v − w = m[P21 − �2w]. (A20)
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Now we plug the above expressions into Eq. (A3), which,
after redistributing the terms and dividing them by �1�2m2

(m > 0 for asymmetrical interactions and, by hypothesis,
�1 > 0), becomes the quadratic equation aw2 + bw + c = 0,
where

a = λ1(�1 − 1)�2 + χλ2(�2 − 1)�1, (A21)

b = −
{
λ1[P12 + (�1 − 1)P21]

+χλ2[P21 + (�2 − 1)P12] + 1 + χ

m2�1�2

}
, (A22)

c = P12P21

�1�2
(�1λ1 + χ�2λ2). (A23)

For asymmetrical interactions, it is possible that a = 0 in
the coexistence region. Thus we write the coexistence fixed
point of the system as

w =
{−b−√

b2−4ac
2a a �= 0

−c
b a = 0,

(A24)

u = m[P12 − (�1 − 1)�2w], (A25)

v = m[P21 − (�2 − 1)�1w]. (A26)

From the above expressions, it is difficult to extract the
behavior of the prevalences with respect to the time scale
parameter χ (or π ). However, in Appendix B we present an
alternative argument that reinforces the behavior observed in
Fig. 5.

2. Model B

Model B has a much simpler procedure to find analytical
expressions for the coexistence fixed point u and v, for general
values of the parameters. Knowing that u, v > 0, one can
divide Eq. (4) by (1 − π )μ1u and Eq. (5) by πμ2v and set
their left-hand sides to 0, obtaining

0 = λ1(1 − u − v) − 1 − χαλ2v, (A27)

0 = λ2(1 − u − v) − 1 + αλ2u, (A28)

which is a 2 × 2 linear system in u and v. Passing convenient
terms to the left side of each equation, one can write the
system in terms of s1 and s2 as defined in (A4):

s1 = u + φv, (A29)

s2 = (1 − α)u + v, (A30)

where we define φ as

φ = 1 + αχλ2/λ1. (A31)

The solution of this 2 × 2 system is

u = s1 − φs2

1 + φ(α − 1)
, (A32)

v = (α − 1)s1 + s2

1 + φ(α − 1)
. (A33)

APPENDIX B: BEHAVIOR OF THE PREVALENCES
WITH π

By plotting the values of the fixed point prevalences,
analytically derived in Appendix A, we could analyze the
behavior of such prevalences with the time scale parameter π

for models A and B. In this Appendix, we provide analytical
support for the observed behaviors in both models.

1. Model A

A possible approach to determine the slope of the fixed
point prevalences u, v,w with π is to differentiate the ex-
pressions (A24)–(A26) with respect to χ [notice, from the
definition in Eq. (10), that χ is an increasing function of π ].
This procedure, however, can be very tedious and provides
little or no analytical insight. An alternative approach is to
implicitly differentiate the reduced equations (A1)–(A3) with
respect to χ , obtaining more insightful expressions.

Let us define here u′ = ∂u/∂χ , v′ = ∂v/∂χ , and w′ =
∂w/∂χ . Implicit differentiation of Eqs. (A1)–(A3) yields

0 = −λ1u′ + (�1 − 1)λ1v
′ − (�1 − 1)λ1w

′, (B1)

0 = −λ2v
′ + (�2 − 1)λ2u′ − (�2 − 1)λ2w

′, (B2)

0 = �1λ1(v′ − w′) + �1λ1(v − w)u′ − w′

+[�2λ2(u − w)v − w]

+χ [�2λ2(u′ − w′)v + �2λ2(u − w)v′ − w′]. (B3)

With some rearrangement, the above expressions can be
written as a linear system given by

A
−→
x′ = −→

b , (B4)

where
−→
x′ = (u′, v′,w′)T and

A =
⎡
⎣ −λ1 (�1 − 1)λ1 −(�1 − 1)λ1

(�2 − 1)λ2 −λ2 −(�2 − 1)λ2

Awu Awv Aww

⎤
⎦, (B5)

with

Awu = �1λ1(v − w) + χ�2λ2v, (B6)

Awv = χ�2λ2(u − w) + �1λ1u, (B7)

Aww = �1λ1u + χ�2λ2v + 1 + χ. (B8)

Moreover, the vector of independent coefficients is
−→
b = (0, 0,−[�2λ2(u − w)v − w])T = (0, 0, bw )T . (B9)

Using Cramer’s rule, we can obtain the χ derivatives as
functions of the model parameters and the prevalences:

u′ = (bwλ1λ2/ det A)(1 − �1)�2, (B10)

v′ = (bwλ1λ2/ det A)(1 − �2)�1, (B11)

w′ = (bwλ1λ2/ det A)[1 − (�1 − 1)(�2 − 1)]. (B12)

Thus, in the asymmetrically interacting regime (0 � �1 <

1 and �2 > 1), u′ has the same sign as w′ (thus u and w have
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the same slope with χ and π ), whereas v′ (v) has opposite
sign (slope). By showing that the ratio bw/ det A is positive,
we could demonstrate that u and w actually increase with
π , while v decreases. Although we could not mathematically
determine the signals of bw and det A for arbitrary model
parameters, we collected robust numerical evidence that bw

and det A are both negative in the coexistence phase (region P4
in Fig. 3) for a wide set of model parameters, and so the ratio
bw/ det A is positive. This suggests that the behaviors shown
in Figs. 4(a) and 5 are robust and should remain for the whole
coexistence region.

2. Model B

For model B, one can extract the dependence of the preva-
lences with π (or χ ) directly from their analytical expressions
[Eqs. (A32) and (A33)], noticing that φ = 1 + αχλ2/λ1 is
an increasing function of χ . The prevalence v of disease II,
as in Eq. (A33), is clearly a decreasing function of φ for
α > 1 (which is the asymmetrically interacting case). From

Eq. (A32), we can also directly infer that the prevalence u of
disease I also decreases with φ for s2 > 0 (or equivalently,
λ2 � 1). However, the coexistence phase (region P4) also
comprehends a region at which λ2 < 1, for which we should
check the behavior with φ more carefully. Taking the partial
derivative of u with respect to φ, we get

∂u

∂φ
= −s2[1 + φ(α − 1)] − (s1 − φs2)(α − 1)

[1 + φ(α − 1)2]
. (B13)

From the above expression, the condition ∂u
∂φ

< 0 can be
simplified as

s2 + (α − 1)s1 > 0, (B14)

which is equivalent to the condition that λ2 is above its critical
value for coexistence, expressed by Eq. (8). This means that
∂u
∂φ

< 0 in the whole coexistence region and, therefore, both
prevalences v and u are decreasing functions of φ, χ , and π .
This is consistent with the observed behaviors in Figs. 4(b)
and 6.
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