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a b s t r a c t 

Elucidating the mechanisms that lead to the emergence, evolution, and survival of cooperation in natu- 

ral systems is still one of the main scientific challenges of current times. During the last three decades, 

theoretical and computational models as well as experimental data have made it possible to unveil and 

explain, from an evolutionary perspective, key processes underlying the dynamics of cooperation. How- 

ever, many common cooperative scenarios remain elusive and at odds with Darwin’s natural selection 

theory. Here, we study evolutionary games on populations that are structured beyond pairwise interac- 

tions. Specifically, we introduce a completely new and general evolutionary approach that allows studying 

situations in which indirect interactions via a neighbor other than the direct pairwise connection (or via 

a group of neighbors), impacts the strategy of the focal player. To this end, we consider simplicial graphs 

that encode two- and three-body interactions. Our simplicial game framework enables us to study the 

competition between all possible pairs of social dilemmas, and grants us the option to scrutinize the role 

of three-body interactions in all the observed phenomenology. Thus, we simultaneously investigate how 

social dilemmas with different Nash equilibria compete in simplicial structures and how such a compe- 

tition is modulated by the unbalance of 2- and 1-simplices, which in its turn reflects the relative preva- 

lence of pairwise or group interactions among the players. We report a number of results that: (i) support 

that higher-order games allow for non-dominant strategists to emerge and coexist with dominant ones, a 

scenario that can’t be explained by any pairwise schemes, no matter the network of contacts; (ii) charac- 

terize a novel transition from dominant defection to dominant cooperation as a function of the simplicial 

structure of the population; and (iii) demonstrate that 2-simplex interactions are a source of strategy 

diversity, i.e. increasing the relative prevalence of group interactions always promotes diverse strategic 

identities of individuals. Our study constitutes, thus, a step forward in the quest for understanding the 

roots of cooperation and the mechanisms that sustain it in real world and social environments. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

Cooperation is abundant and ubiquitous in natural systems, 

anging from bacteria to human endeavours. Admittedly, our mod- 
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rn society is itself the result of thousands of years in which coop- 

rative behavior has given rise to complex structures of relation- 

hips, norms, and in general to the possibility of coexistence de- 

pite the many differences between human beings. Moreover, our 

ooperative behavior has been shown to be key not only for the 

rowth of our society, but also for the solution of many challeng- 

ng troubles, such as disease transmission [1,2] , resource allocation 

3] , and other pressing challenges like climate changes [4,5] . 
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The simplest form of cooperation involves two kind of strate- 

ists (or players): cooperators and defectors. A cooperator pays a 

iven cost to allow individuals in the population to obtain a ben- 

fit, which is usually higher than the cost of cooperation [6] . De- 

ectors, on the other hand, are those individuals that exploit the 

ituation by collecting the benefits produced by cooperators with- 

ut paying costs. Although the emergence and sustainability of co- 

peration have been the subject of intense research in the last 

wo decades, still many problems remain open, and a fundamental 

uestion is not yet fully answered: what are the mechanisms that 

ive rise to cooperation? Significant advances in our understand- 

ng (and a partial answer to the previous question) were given 

n Ref. [7] , where Nowak individuated five mechanisms supporting 

ooperative behavior in nature: kin selection, direct reciprocity, in- 

irect reciprocity, group selection and network reciprocity. In our 

ork, we delve into the possible ways in which network reci- 

rocity could enable cooperative behavior. It is worth stressing that 

etwork reciprocity, in which individuals are considered to inter- 

ct following an underlying structure (a network), has been exten- 

ively studied theoretically [8–13] , but whether it plays a role or 

ot in promoting cooperation remains still open to experimental 

alidations [14] . 

Elucidating the mechanisms that promote cooperation is an im- 

ortant conceptual problem as well. The ubiquitous presence of co- 

perative behavior is compatible with Darwin’s natural selection 

n some cases, but not always. For instance, cooperation due to 

inship between individuals is a possible mechanism that as long 

s a cost is paid, contributes to propagate an individual’s genes. 

onetheless, cooperation among unrelated individuals does not 

onfer any additional fitness or selection advantage, and therefore 

ndividuals that bear the costs of cooperation should not become 

xed in the population, and on the contrary they should go extinct 

fter some generations. This would naturally lead to a population 

f all defectors, which, remarkably, is not what we observe in na- 

ure and our modern societies. Such an apparent contradiction is 

he main focus of evolutionary game theory (EGT) [15–18] , whose 

ltimate goal is to explain how cooperative behavior emerges and 

nfolds in a plethora of systems. 

In this paper, we follow the general methodology employed in 

GT for the evolution of populations of strategies, but we imple- 

ent it on more complex structures of interplays that are better to 

escribe how individuals interact. Namely, the general framework 

f EGT is a two-agent two-strategy game [19–22] , whereby each 

ndividual chooses a strategy from the set of the available ones [co- 

perate (C) or defect (D)] without knowing the strategy of its op- 

onent. When two agents interact, a cooperator obtains a reward 

 if interacting with a cooperator, and the so-called suckers payoff

if interacting with a defector, whereas a defector gets T (the so- 

alled temptation to defect) if interacting with a cooperator, and 

 punishment P if interacting with another defector. Different val- 

es of these parameters bring about a diversity of dilemmas which 

orrespond to different equilibrium points, as we shall discuss in 

he next section. 

Evolutionary models have allowed identifying additional mech- 

nisms that could play a role to sustain cooperation among hu- 

ans, including memory effects [23,24] , strategy diversity [25,26] , 

iverse forms of reputation [27,28] and aspiration [29,30] and 

nymity [31] . Central to our work, there have been many ad- 

ances in the study of how interactions among humans are struc- 

ured. These advances include the discovery and characterization 

f multilayer and interdependent networks [32–34] , which have 

een shown to potentially lead to new forms of cooperative behav- 

or [35–37] . More recently, simplicial complexes and other forms 

f higher-order interactions [38,39] have also become amenable 

o a deeper scrutiny. The latter structures are of particular rel- 

vance because they allow to study situations in which individ- 
2 
als’ interactions go beyond traditional pairwise connections in 

patial and low-order networked evolutionary games. They in- 

lude, for instance, group interactions, which are found more often 

han not (for instance, peer pressure effects on a given individual 

rom a group of neighbors with which it is networking). Impor- 

antly enough, formulating evolutionary game dynamics in terms 

f higher-order models will allow to study scenarios in which pair- 

ise and higher-order interactions coexist. 

When higher-order interactions are taken into account, the in- 

erplay between a given individual and one of its neighbors is not 

nly affected by their two strategies, but also by that of one of 

ts other neighbors, or even by those of a group of other neigh- 

ors. Therefore, it is a crucial problem that of investigating, as we 

re doing in this paper, simplicial game frameworks that explore 

he evolution of cooperative behavior as a function of the fraction 

f two-body and three-body interactions. In particular, simplicial 

omplexes [38–40] can effectively encode interactions between any 

umber of units, including 0-simplex (a node), 1-simplex (a link), 

-simplex (a triangle), and so on. Our proposal considers the evolu- 

ion of cooperative behavior combining 1-simplex (two-body) and 

-simplex (three-body) interactions. The latter three-body connec- 

ions introduce new theoretical and algorithmic difficulties, since 

 common neighbor of two linked players could adopt either the 

ame or different strategies with each of them. We study these 

cenarios and report results of the phase diagrams of the evolu- 

ionary dynamics for different choices of the parameters that de- 

ne the dilemmas, as well as results corresponding to the micro- 

copic dynamics of the coexistence of cooperators and defectors. 

ext, we describe the evolutionary game model implemented here, 

ncluding the definition of the simplicial game that allows us to 

tudy higher-order interactions. 

. The model for simplicial games 

.1. Generation of the simplicial structure 

We consider a network G composed of N nodes, where the 

et of edges between nodes is uniquely coded into a symmetric 

 × N binary-valued adjacency matrix A ≡ { a i j } . This means that if 

n edge exists between nodes i and j, then a i j = 1; otherwise, a i j = 0.

oreover, k i = 

∑ N 
j=1 a i j is the number of neighbors of player i , also 

alled node i ’s degree. In order to implement and study the sim- 

licial game, we first generate a substrate network following the 

ules proposed in Ref. [41] , which include two possibilities: random 

nd preferential connection rules. 

We focus, in particular, on the case where the network is gen- 

rated under the random scheme, which is as follows: (1) At t = 0 ,

enerate a fully connected subgraph G 1 with a number of ini- 

ial nodes N 0 (we use N 0 = 5 ); (2) At step t = 1 , add to the sub-

raph G 1 m new nodes, which are linked to the two endpoints of 

 edges that are randomly chosen among those already present 

n the subgraph G 1 (avoiding that the m edges have overlapping 

odes). Thus, the subgraph G 1 will have m new triangles. In our 

tudy, we set m = 1 , which in its turn implies generating a final

etwork with an average degree 〈 k 〉 = 4 . Finally, (3) repeating step

2) until a network G with N nodes is formed. Using the previous 

lgorithm, it is not difficult to check that the probability of each 

dge being selected in (2) is 

p = 

1 

N 0 (N 0 − 1) / 2 + 2 m (t − 1) 
(1) 

The preferential rule for connecting nodes consists of the same 

rocedure as before except that when selecting an existing edge 

rom the subgraph G 1 in step (2), this is done proportionally to the 

eneralized degree of such an edge, that is, an edge (i j) is selected 
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Fig. 1. Schematic representation of all possible social dilemmas as a function of 

the pair of parameters (T, S) . The dilemmas shown in the quadrants have different 

Nash equilibria and fixed strategies, going from cooperation (Harmony Game) to 

defection (Prisoner’s dilemma). R and P have been fixed to 1 and 0, respectively. 

See the text for further details. 
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Fig. 2. Sketches of a clique (left panel) and of a 2-simplex (right panel) formed by 

the 3 nodes i , j, and k . The quantity s nm represent the strategy that node n adopts 

against node m . 
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ith probability 

p = 

k i j (t − 1) ∑ 

i, j k i j (t − 1) 
, (2) 

here k i j (t) is the generalized degree of edge i j at time (t) , that 

s, the number of triangles formed (at time t) by the link i j. 

It has to be highlighted that the non preferential (the prefer- 

ntial) case is encompassed by to the so-called Network Geometry 

ith Flavor model [42–44] for the case of triangles, and flavor s = 0

 s = 1 ) in that model. It is easy to demonstrate that the generated

tructure of links forms always (and only) triangles among the net- 

ork’s nodes. Furthermore, Ref. [41] demonstrated that the random 

cheme (which is the one used in the present Manuscript) gen- 

rates a network with an imprinted highly heterogenous (power- 

aw) distribution for the node degree, but with an associated rather 

omogeneous (exponentially decaying) distribution of the general- 

zed degree. In other words, while one can encounter great dif- 

erences in the degree from a random choice to another of a net- 

ork’s node, different links of the graph participate essentially to 

he same number of triangles, with only small differences from a 

ink to another. 

In our study, we label each one of such triangles, and we in- 

roduce a parameter 0 ≤ ρ ≤ 1 regulating the fraction ( 1 − ρ) of 

riangular structures which are taken to be just cliques resulting 

rom the closure of three 1-simplices, and the fraction ( ρ) of tri- 

ngles which are instead considered as genuine 2-simplex inter- 

ctions. Namely, after generation of the network and labeling of 

ll triangles, a fraction ρ of randomly chosen triangles is taken to 

epresent pure three-body interactions in the system, while the re- 

aining fraction 1 − ρ of triangles is considered to be the super- 

osition of three links (i.e. three two-body interactions). 

As for the evolutionary dynamics, we consider the family of 

ymmetric 2x2 games, which is represented by the payoff matrix: 

C D 

C 
D 

(
1 S 
T 0 

)

ith only two free parameters, S and T , that determine the equilib- 

ium structures in the square ( −1 ≤ S ≤ 1 , 0 ≤ T ≤ 2 ) of the T − S

pace of the following four games: the Harmony game, the Pris- 

ner’s Dilemma game, the Snowdrift game and the Stag Hunt 

ame (see Fig. 1 for the parameter setting of these four dilemmas). 

amely, the prisoner’s dilemma verifies S < 0 and T > 1 , and it has

 unique strict Nash equilibrium corresponding to all defectors. The 

tag Hunt game (or assurance game) is such that S < 0 and T < 1
3 
nd it has two pure Nash equilibria: CC and DD. The Snowdrift 

ilemma (or chicken game) corresponds to T > 1 and S < 0 and it

as several Nash equilibria involving both C and D (this is an anti- 

oordination game). Finally, the Harmony game is defined for T < 1 

nd S > 0 and it represents a situation where mutual cooperation 

CC) yields the maximum possible payoff to both players. 

.2. Definition of the simplicial game 

We start by defining a strategy matrix, S = { s i j } , such that s i j =
 if player i cooperates with player j, s i j = 2 if player i defects

hen playing with j, and s i j = 0 if there is no connection between

 and j, i.e., when a i j = 0 . s i j thus represents the strategy that node

 chooses when playing against node j. Consequently, a player i 

s associated to a vector of independent strategies, the dimension 

f which is its degree k i . In other words, in a particular instance

f a game, players can simultaneously cooperate with some of 

heir neighbors and defect with others. Thus, k i = k C 
i 

+ k D 
i 

, where

 

C 
i 

= 

∑ 

j| s i j =1 a i j ( k 
D 
i 

= 

∑ 

j| s i j =2 a i j ) is the time-dependent number of 

eighbors player i is currently cooperating (defecting) with. 

Now, definition of an evolutionary game on a structure of pair- 

ise interactions (a network) implies the introduction of a payoff

atrix. In our case, instead, defining a 2-simplicial game implies 

he definition of a payoff tensor, which is the object of the next 

ub-section. 

.3. Calculation of the payoff on 1-simplices and on 2-simplices 

Let us postulate that the payoff �i of node i is accumulated 

n each link, and let us illustrate how payoffs are earned by con- 

idering the payoff of node i calculated for the specific link (i, j) . 

he link participates to k i j triangles, and therefore the accumulated 

ayoff of node i in that link is: 

i, (i j) = 

1 

k i j 

∑ 

τ∈� 
�i, (i j) ,τ , (3) 

here the sum runs over all the elements τ of the set � which 

ontains all the k i j triangles formed by the link i j, �i, (i j) is the ac- 

umulated payoff of node i along the specific link (i j) , and �i, (i j) ,τ

s the payoff of node i along the specific link (i j) with respect to 

he specific triangle τ . 

Now, it is crucial to distinguish between the case in which a 

iven triangle τ represents just the sum of three 1-simplices (i.e., 

t is a triangle formed by the closure of three separate links, as 

epicted in the left sketch of Fig. 2 ) and the case in which the

riangle τ stands instead for a three-body interaction, namely, a 

-simplex as illustrated in the right sketch of Fig. 2 . 

If the triangle τ is the closure of three 1-simplices, then in this 

ase the link (i j) just represents a pairwise interaction between 

odes i and j, and the value of �i, (i j) ,τ in that triangle will be 

imply obtained from a payoff matrix 
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C D 

C 
D 

(
1 S 1 
T 1 0 

)

e henceforth refer to this sort of interactions as Game1. 

When instead the triangle τ stands for a 3 body-interaction, it 

eans that the link (i j) is part of a 2-simplex (see the right sketch 

f Fig. 2 ). In this case, therefore, the computation of �i, (i j) ,τ needs 

o involve explicitly also the strategic state of node k which is clos- 

ng the 3 body-interaction with nodes i and j. This implies that we 

eed to introduce a tensor. The procedure is as follows: 

1. Check the strategies s ki and s k j that node k is using against 

nodes i and j. 

2. If s ki = s k j , then, nodes i and j play Game2 along link (i j ) , i.e.,

the payoff is calculated from the matrix 

C D 

C 
D 

(
1 S 2 
T 2 0 

)

3. If s ki 	 = s k j , then, nodes i and j play Game3 along the link (i j) ,

i.e., the payoff is calculated using the matrix 

C D 

C 
D 

(
1 S 3 
T 3 0 

)

It is worth stressing that the above rules imply that a node 

ould be playing, concurrently, different dilemmas with different 

eighbors or group of neighbors depending on the parameteriza- 

ions of the payoff matrices of Game1, Game2 and Game3. Notice 

hat the conditions 1-3 above can be chosen also in other ways to 

ctually define a 2x2x2 payoff tensor (the superposition of the two 

atrices defining Games 2 and 3). The motivation of our choice is 

ictated by the fact that in social endeavours one individual may 

ehave differently in its relationships with a neighbor if he sees 

hat a third individual is or isn’t treating the two of them in the 

ame footing. 

An evolutionary step finishes when the payoffs of all nodes are 

alculated. The evolution of the population of strategists proceeds 

sing a Fermi rule. Specifically, the total payoff of node i is calcu- 

ated as 

�i = 

1 

k i 

∑ 

j∈ N i 
�i, (i j) (4) 

here N i represents the neighbors of node i . Next, each node im- 

tates the strategy adopted against it by its neighbor ˜ j which ac- 

umulated the highest total payoff in the current step, i.e., node i 

pdates its k i strategies with probability 

 = 

1 

1 + e [ ( �i −� ˜ j ) /K ] 
. (5) 

In our simulations, we set (unless otherwise specified) the so- 

alled Fermi temperature K equal to 0.01, and the strategies are 

ynchronously updated, that is, all the agents update their strat- 

gy vector at the same time. In what follows, we start by showing 

he emerging scenario when one varies the proportion, ρ , of three- 

ody interactions in the underlying network, and inspects this way 

he impact of having higher-order interactions on the evolutionary 

ynamics. 
4 
. Results and discussions 

.1. Competition of social dilemmas 

Calibrating the parameters of Game1 and Game3 to be the same 

i.e., setting T 1 = T 3 and S 1 = S 3 ) and varying those of Game2 ( T 2 
nd S 2 ), our simplicial game framework enables us to study the 

ompetition between all possible pairs of social dilemmas. Further- 

ore, increasing ρ grants to probe and scrutinize the role of three- 

ody interactions in all the observed phenomenology. This way one 

an simultaneously investigate how social dilemma with different 

ash equilibria compete in simplicial structures and how such a 

ompetition is modulated by the unbalance of 2- and 1-simplices, 

hich in its turn reflects the relative prevalence of pairwise or 

roup interactions. 

The results are shown in Fig. 3 where, from the first to the 

ourth columns, Game1 and Game3 are assigned to, respectively, 

he Harmony (H), Stag Hunt (SH), Snowdrift (SD) and Prisoner’s 

ilemma (PD) games. Fig. 3 reports the T 2 − ρ phase diagram of 

he (average) frequency of cooperation set in the asymptotic game 

ynamics, i.e. the time average of the overall fraction of coopera- 

ive strategies. Furthermore, we have set S 2 = 0 . 5 in the first row of

anels, which corresponds to Game2 being an Harmony dilemma if 

 2 ≤ 1 or a SD game when T 2 ≥ 1 . Likewise, when S 2 = −0 . 5 (sec-

nd row of panels in Fig. 3 ), Game2 becomes a SH game if T 2 ≤ 1 ,

nd a PD for T 2 ≥ 1 . In this way, one obtains the emergent dynam-

cs for all possible competitions between pairs of dilemmas in the 

ystem. 

Let us now discuss the observed scenarios in Fig. 3 , paying par- 

icular attention to the impact of higher order games. For simplic- 

ty, we start by analyzing the results shown in the panels of the 

rst column, which correspond to Game1 and Game3 both being 

armony games. Since the equilibrium point for this case is C C , 

e should observe that the dominant strategy for low values of 

- that is, regardless of what is represented by Game2 - , is co- 

peration. This is indeed what one obtains. As ρ increases, how- 

ver, so does the number of 2-simplices in the system and thus 

he likelihood that a given node i is involved in different games. In 

uch a case, the cumulative payoff starts to depend more strongly 

n the results of the dynamics of Game2, which can be either of 

he 4 dilemmas. When T 2 ≤ 1 no matter whether S 2 > 0 or S 2 < 0 ,

he equilibria of Game2 tend to favor cooperation (they are H and 

H games, respectively), and thus, the effect of increasing ρ is not 

oticeable. On the contrary, when T 2 ≥ 1 , Game2 represents ei- 

her a SD dilemma ( S 2 > 0 ) or a PD game ( S 2 < 0 ), both of which

re detrimental to coordination or cooperation. Therefore, as ρ in- 

reases, the fraction of cooperative behavior decreases. 

A richer, and remarkable, scenario emerges when Game 1 and 

ame 3 are set to be SH, SD and PD (i.e. in the second, third and

ourth columns of Fig. 3 ). Now, for pairwise interactions ( ρ = 0 ) 

ne has the setting of a dominant defective state. However, when 

 2 < 1 (i.e., when Game 2 is either the Harmony Game, as in the

ower half-panels of the first row, or the Stag Hunt Game, as in the 

ower half-panels of the second row) a clear transition occurs, as ρ
ncreases, toward dominant cooperation. Such a transition is, there- 

ore, fully due to the prevalence of 2-simplex interactions in our 

ystem. The transition occurs at all T 2 < 1 for the Harmony Game, 

hich is not so surprising, given the fact that the Nash equilibria 

f the H game is full cooperation: increasing ρ (and therefore in- 

reasing the number of times the system plays the H game) one 

hould expect a transition to prevalent cooperation. The absolutely 

on trivial case is when Game 2 is set to be SH, as this game has

wo pure Nash equilibria: CC and DD. In this case, Fig. 3 shows 

hat for T 2 < 

˜ T 2 < 1 a transition still occurs toward complete coop- 

ration, even for the case for which Games 1 and 3 are in PD (see

anel h). 
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Fig. 3. Contour plots of the cooperation frequency F C (the fraction of adopted cooperative strategies, see text for definition) in the asymptotic state, as a function of the 

fraction of 2-simplices ρ and of T 2 , for fixed values of S 2 (see color code reported in the bottom of the Figure). The other parameters are as follows: the first column 

corresponds to T 1 = T 3 = 0 . 8 , S 1 = S 3 = 0 . 2 which define the Harmony (H) game; the second column corresponds to T 1 = T 3 = 0 . 8 , S 1 = S 3 = −0 . 2 which define the Stag Hunt 

(SH) game; the third column corresponds to T 1 = T 3 = 1 . 2 , S 1 = S 3 = 0 . 2 which define the Snowdrift (SD) game; the fourth column corresponds to T 1 = T 3 = 1 . 2 , S 1 = S 3 = 

−0 . 2 which define the Prisoners Dilemma (PD) game. On the top of each column a proper label is displayed indicating Game1 and Game3. On the other hand, the values 

of S 2 also determine which dilemma corresponds to Game2. Specifically, we set S 2 = 0 . 5 for the first row of panels, and S 2 = −0 . 5 for the second row of panels. All panels 

are furthermore divided horizontally by dashed lines positioned at T 2 = 1 . Indeed, for the chosen setting, in panels a,c,e,g one has a SD game if T 2 ≥ 1 and a H dilemma for 

T 2 ≤ 1 , whereas in panels b,d,f,h one has a SH dilemma if T 2 ≤ 1 and a PD game for T 2 ≥ 1 . Proper labels are displayed on the right side of the figure indicating Game2. The 

substrate network has been generated starting from a fully connected graph with five nodes and adding one triangle (by means of the random procedure described in the 

text) at each time step, up to reaching a system size of N = 2 , 0 0 0 nodes. K = 0 . 01 . The dynamics is evolved over 30,0 0 0 steps, and data refer to averages over the last 5,0 0 0 

when the system is already settled into its asymptotic state. Furthermore, displayed data correspond to a single network realization, and a single initial condition. 
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The conclusion is that for T 2 < 1 a regime is always found such

hat increasing the prevalence of three-body interactions in our 

etwork, the competition of the two dilemmas conduces to the 

xistence and maintenance of cooperation. In other words, the im- 

act of higher-order games for the evolution of cooperation rad- 

cally changes when the dominant strategy is defection. In these 

ases, when ρ increases, cooperators have a chance to invade an 

therwise fully defectors population and survive for large enough 

alues of ρ when T 2 < 1 , i.e., when Game2 is either a H dilemma

 S 2 > 0 ) or a SH game ( S 2 < 0 ). 

.2. Transition between the two strategies regulated by 2-simplex 

nteractions 

The observed transitions are associated to consistent fluctua- 

ions in time of the strategies of each player. Further to the pre- 

ious analysis, and in order to examine such microscopic traits in 

he dynamics, we have therefore monitored the volatility of both 

ooperation and defection, measuring the standard deviation of the 

requencies of each strategy. Specifically, we compute 

 C (t) = 

∑ 

i F C i (t) 

N 

(6) 

nd 

 C = 〈 F C (t) 〉 T , (7) 

here F C (t) represents the total cooperation rate in the network 

t step t , and F C and σF C 
are, respectively, the time-averaged coop- 

ration density over an observation time T and the standard de- 

iation of F C (t) . Trivially, σF C 
equals to 0 if the evolution falls into

 frozen (absorbing) state, and larger than 0 if the system settles 

nto an asymptotic state in which the fraction of strategists is time 

ependent and fluctuates around an average value - the more in- 

ense the fluctuations, the larger the values of σF C 
. The results are 

hown in Fig. 4 : σ drops to 0 when either cooperators or defectors 
5 
ominate the network, but increases above zero when cooperators 

nd defectors coexist, reaching its maximum value exactly at the 

ransition areas from one to another dominant strategy. The latter 

appens whenever the equilibrium corresponding to a dominant 

trategy destabilizes due to the increase of the number of trian- 

les and therefore there is a bigger impact of Game2 interactions 

n the outcomes of the dynamics, as it can be clearly seen when 

omparing Fig. 3 with Fig. 4 . 

To further explore the evolutionary dynamics of the populations 

f the two strategists, we chose six scenarios for a closer inspec- 

ion taken from the competition of SH and SD (as Games 1 and 

) with SH as Game 2. In Fig. 5 , we report the evolution of co-

peration and defection strategies in the six scenarios. The Figure 

learly shows that the overall simplicial game evolves to a state in 

hich either one of the two strategies dominates over the others 

ith only residual fluctuations (as in panels a, c, d and f), or to 

 time-dependent asymptotic state where the system enters into 

 cycle of alternate dominance of cooperation and defection (as in 

anels b and e), with an average overall frequency of either of the 

wo strategies equal to 0.5. In this latter regime, fluctuations also 

ntensify and actually determine, time by time, which of the two 

trategies is majority in the system (the shaded gray areas in pan- 

ls b and e mark actually time intervals in which cooperators dom- 

nate over defectors). 

.3. 2-simplex interactions induce players’ diversity 

In order to further investigate on the microscopic features of 

he observed fluctuations, we calculate here the link strategy in- 

ex, defined by 

 i = 1 − | k D 
i 

− k C 
i 
| 

k i 
. 

uch an index quantifies the rigidity of each node’s strategy vector: 

t indeed vanishes for all those players which display strategy vec- 
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Fig. 4. Standard deviation σF C of the cooperation frequency depicted in Fig. 3 (see text for definition) as a function of ρ and T 2 . The color code is reported at the bottom of 

the Figure. Notice that in the regimes where one of the two strategies, cooperation or defection, dominates, the standard deviation almost vanishes, whereas it is larger and 

larger when more and more coexistence of the two strategies occurs. All parameter values and stipulations as in the caption of Fig. 3 . In panels d and f, stars indicate the 

locations in the parameter space where the time dependent plots of Fig. 5 are reported, with labeling letters indicating the specific panel of Fig. 5 they are referring to. All 

labeled star corresponds to T 2 = 0 . 2 . The other parameter is: ρ = 0 . 05 (A and D), ρ = 0 . 95 (C and F), ρ = 0 . 4 (B), and ρ = 0 . 775 (E). 

Fig. 5. Time evolution of cooperators’ ( F C (t) ) and defectors’ ( F D (t) ) frequencies for different values of the pair (T 2 , S 2 ) and three values of ρ . See text for definitions. The 

first row of panels corresponds to the case in which Games 1 and 3 are fixed to a SH game, and compete with another SH game as Game 2. The letter labeling each panel 

corresponds to the parameter choice indicated with a star and labeled with the same capital letter in Fig. 4 . The second row of panels corresponds instead to the case in 

which Games 1 and 3 are fixed to a SD game, and compete with a SH game as Game 2. Also in this case, the letter labeling each panel corresponds to the parameter choice 

indicated with a star and labeled with the same capital letter in Fig. 4 . In both upper and lower rows of panels one can clearly see the emergence of two distinct regimes: a 

first one where one of the two strategies is dominant over the other (panels a, c, d, f), and a second one where instead there is a time-dependent coexistence of cooperators 

and defectors (panels b and e), with dominant strategies alternating in time. Shaded gray areas in panels b and e mark the time intervals in which cooperators dominate 

over defectors. See the captions of Figs. 3 and 4 for all other parameters and stipulations. 
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ors made of all cooperation or all defection entries (i.e. those play- 

rs which actually adopt a unique node strategy against all their 

eighbors), whereas it gets larger and larger the more diversified 

he players’ identities are. 

Once the link strategy index has been calculated for each node 

f the network, a network strategy diversity D can be defined in 

he asymptotic state (i.e. at a final time t f ) by just averaging over

ime and over all nodes: 

 = 

1 

NT 

N ∑ 

i =1 

t f ∑ 

t k = t f −T 

� i (t k ) , 
6 
here the node average runs over all the elements of the network, 

nd the time average runs over the last T steps of the system’s 

volution. 

Fig. 6 reports the values of D that correspond to increasing frac- 

ions ρ of 3-body interactions and increasing values of the tem- 

erature K, calculated along the line passing through points A-C in 

ig. 4 (d) (left panel) and that containing the points D-F in Fig. 4 (f)

right panel). It is seen that, at any fixed value of ρ , D increases 

ith K, which is not surprising as rising the temperature has the 

onsequence of rocketing noise effects in Eq. (5) , which in its turn 

egulates the way all strategies are updated. What is instead re- 
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a) b)

Fig. 6. Network strategy diversity D (see text for definition) vs. the fraction ρ of 3- 

body interactions for increasing values of the temperature along (a) the line passing 

through points A-C in Fig. 4 (d), and (b) that containing the points D-F in Fig. 4 (f). 

The horizontal axis is in logarithmic scale, and the color code for the different 

curves in both panels is reported in the legend at the bottom of the figure. In all 

cases, increasing the fraction of 2-simplices induces a substantial increase in the 

diversity of the players. Vertical lines are drawn at the points where fluctuations of 

the cooperation frequency are maximal in Fig. 4 (d) and (f). 
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arkable is that at all fixed temperatures (even at very low ones, 

s in the dark blue line of the left panel) D substantially increases 

ith ρ , indicating that 2-simplex interactions are actually a source 

f diversity in the network. By comparing Fig. 6 and Fig. 4 , one fur-

hermore sees that at higher temperatures D (ρ) displays a maxi- 

um where fluctuations of the cooperation frequency are maxi- 

al. 

. Conclusions 

Altruism is the act of benefiting others at the expenses of 

ne’s own interests. Cooperation maintains social stability, but it 

s not always compatible with Darwin’s natural selection mecha- 

isms. For instance, cooperation due to kinship between individ- 

als may contribute to propagate an individual’s genes, but coop- 

ration among unrelated individuals does not confer any selection 

dvantage, and therefore individuals that bear the costs of coopera- 

ion should go extinct after some generations, which is not instead 

hat one observes in nature and modern societies. 

In our study, we revealed some novel mechanisms which could 

e at the basis of the emergence and maintenance of cooper- 

tion in a networked population. Namely, we considered evolu- 

ionary game theory, and showed how to implement it on more 

omplex structures of interplays, such as simplicial complexes, 

here pairwise and higher-order interactions coexist. The frame- 

ork we introduced enables one to simultaneously investigate how 

ocial dilemmas with different Nash equilibria compete in simpli- 

ial structures and how such a competition is modulated by the 

nbalance of 2- and 1-simplices, which in its turn reflects the rel- 

tive prevalence of pairwise or group interactions. 

A series of novel, and remarkable, results are found. 

First of all, it is seen that increasing the prevalence of three- 

ody interactions, the competition of dilemmas conduces to the 

xistence and maintenance of cooperation. In other words, higher- 

rder games allow for non-dominant strategists to emerge and co- 

xist with dominant ones, eventually taking over the dynamics in 

ome parameter regions. Therefore, our results provide an expla- 

ation, based on higher-order interactions, for situations in which 

ooperation prevails despite the fact that evolutionary game dy- 

amics in well-mixed or networked populations would not support 

t. 

A second result is that the transition from dominant defection 

o dominant cooperation (as the number of 2-simplex interactions 

ncreases) is characterized by fluctuations in time which display a 

aximum exactly at the transition point. In practice, the system 
7 
ets either on a state where one of the two strategies asymptoti- 

ally dominates over the others at an almost constant value with 

nly residual fluctuations, or on a time-dependent asymptotic state 

here dominance of cooperation and defection alternates, with an 

verage overall frequency of either of the two strategies equal to 

.5, and with intensified fluctuations that actually determine, time 

y time, which of the two strategies is majority in the system. 

his latter scenario resembles the outcome of processes implying 

ichotomic choices in modern societies, such as, for instance, the 

residential US elections. There, indeed, one has essentially a bipo- 

ar system where two parties compete regularly for the presidency 

nd which sees two main blocks of voters forming the electoral 

ore of the two parties (two clusters of singleton strategists) and 

 consistent group of swing voters whose choice is the one which 

ctually determines, time by time, the final outcome, i.e. the preva- 

ence of a party over the other. 

The third novel result is that 2-simplex interactions are a source 

f strategy diversity in the network, i.e. increasing the relative 

revalence of group interactions always promotes diverse strate- 

ic identities of individuals. Strategy diversity is of particular im- 

ortance in the evolutionary dynamics of structured populations 

25,26] , as it overcomes the limit of node’s strategies, which cer- 

ainly can be a reasonable choice for organisms with no or lim- 

ted self-awareness and intelligence, but which becomes unrealistic 

or more complex living beings, as humans and many other ani- 

als act differently with certain peers than they do around others. 

oreover, it is known that monotonic strategies lead, in general, 

o time stationary network’s arrangements, i.e. the setting (from a 

iven time on) of a population of simpletons where the identity of 

ach unit is that of a permanent cooperator or of a permanent de- 

ector. This is also far from properly representing real interactions 

n human or animal societies, wherein members actually alternate 

ooperation and defection in time, in a way that is very much sim- 

lar to that displayed by us in Fig. 5 . In social systems, for instance,

he human propensity to cooperation does vary in time, and this 

as important consequences for the outcomes in decision conflicts 

45] , and competitive environments [46] . In biophysical systems, 

hanges in cooperative behavior may be observed over time due to 

opulation feedbacks [47] , or to varying resource availability [48] . 

Finally, it is important to mention that the shown results are 

obust with respect to network’s size and average degree, and to 

xternal temperatures, in the sense that qualitatively similar be- 

aviors can be obtained by changing N, 〈 k 〉 and K within rather ex- 

ended ranges of their values. The case where also generalized de- 

rees are heterogeneous [which would imply the use of Eq. (2) in 

he graph’s generation process] will be presented elsewhere. 
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