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a b s t r a c t 

Mutualistic networks are used to study the structure and processes inherent to mutualistic relationships. 

In this paper, we introduce a random matrix ensemble (RME) representing the adjacency matrices of 

mutualistic networks composed by two vertex sets of sizes n and m − n . Our RME depends on three pa- 

rameters: the network size n , the size of the smaller set m , and the connectivity between the two sets α, 

where α is the ratio of current adjacent pairs over the total number of possible adjacent pairs between 

the sets. We focus on the spectral, eigenvector and topological properties of the RME by computing, re- 

spectively, the ratio of consecutive eigenvalue spacings r, the Shannon entropy of the eigenvectors S, and 

the Randi ́c index R . First, within a random matrix theory approach (i.e. a statistical approach), we identify 

a parameter ξ ≡ ξ (n, m, α) that scales the average normalized measures < X > (with X representing r, S

and R ). Specifically, we show that (i) ξ ∝ αn with a weak dependence on m , and (ii) for ξ < 1 / 10 most 

vertices in the mutualistic network are isolated, while for ξ > 10 the network acquires the properties 

of a complete network, i.e., the transition from isolated vertices to a complete-like behavior occurs in 

the interval 1 / 10 < ξ < 10 . Then, we demonstrate that our statistical approach predicts reasonably well 

the properties of real-world mutualistic networks; that is, the universal curves < X > vs. ξ show good 

correspondence with the properties of real-world networks. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Many real-world networks can be represented as having two 

ypes of nodes grouped into two disjoint sets, such that nodes 

ithin the same set are not adjacent. A network satisfying this def- 

nition is denominated a bipartite network , and examples of such a 

tructure can be found across a broad range of systems [1] . For in-

tance, there are several types of social networks that have a natu- 

al bipartite representation, such as the actor-movie network [2,3] , 

here actors are linked to movies in which they were cast; coau- 

horship networks in which the two sets of nodes are authors and 

apers, while the edges reveal the authorship of the latter [1,3] ; 

nd networks linking people to the social events they attended [4] . 

ther noteworthy examples include recommendation systems [5] , 

etworks of heterosexual contacts [6] , among others [1] . Bipartite 

etworks are particularly relevant in ecology [7] , for they naturally 
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ncode the structure of mutualistic interactions of plant-pollinator, 

eed dispersal, and host-parasite networks [7,8] . In the theoreti- 

al domain, bipartite networks are useful to encapsulate the struc- 

ure of networks formed by distributions of subgraphs [9] , where 

ne group is formed by nodes, and the other group by subgraphs 

o which the nodes are attached. Bipartite networks can also of- 

er an alternative representation of hypergraphs by mapping nodes 

nd hyperedges into disjoint groups, where an original hyperedge 

s connected by an edge to the nodes it encompasses in the origi- 

al hypergraph representation [1,10] . 

In all the above examples, the disjoint sets aggregate nodes 

hat have the same type, and the edges only run from one set to 

he other. However, from a bipartite network it is also possible to 

nfold relationships pertaining to nodes that belong to the same 

roup. For example, from the actor-movie network we are able to 

onstruct another network revealing who acted with whom: if two 

ctors are connected to at least one common movie in the original 

ipartite network, a link is then created in a new network inform- 

ng that they have collaborated at least once. The new generated 

etwork is oftentimes referred to as the one-mode projection of the 

https://doi.org/10.1016/j.chaos.2021.111504
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111504&domain=pdf
mailto:thomas.peron@usp.br
https://doi.org/10.1016/j.chaos.2021.111504
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ipartite structure [1] , owing to the fact that all nodes have the 

ame type in the new mapping. The same procedure can be ap- 

lied in order to obtain the one-mode projection of the movie set, 

hereby connecting any two movies that have at least one actor in 

ommon. For any bipartite network, there are thus two one-mode 

rojections, one associated with each type of node. 

One-mode projections are useful, since they allow the inves- 

igation of aspects that might be hidden or simply not appar- 

nt in the original bipartite network. In certain applications, how- 

ver, neither the bipartite network nor its two one-mode pro- 

ections alone are sufficient to accurately model the dynamics of 

he system that they represent. For example, the population dy- 

amics of plant-pollinator networks depend crucially on both mu- 

ualistic interactions and intra-group competitions [7] . Mutualis- 

ic connections in such an ecological community can be empiri- 

ally mapped by field observations; that is, the information that a 

iven plant is pollinated by a given animal species can be stored 

n a bipartite network where the two types of nodes are plants 

nd pollinators [7] . Intra-group connections, which quantify how 

trongly plants and pollinators compete among themselves for re- 

ources, are, on the other hand, not readily accessed and need to 

e inferred via one-mode projections onto the pollinator and plant 

roups [7] . There is not a single way to project the bipartite net- 

orks in order to obtain the intra-group connections in this con- 

ext. Traditional dynamical models adopt a mean-field description 

y treating the intra-groups to be fully connected, creating then a 

cenario in which all plants and pollinators compete equally for re- 

ources [11] . This has been argued to be a very strong assumption 

ince it neglects completely the rich structure of the bipartite mu- 

ualistic interactions observed in real ecological communities [12] . 

o overcome this limitation, heterogeneous competition schemes 

ave been recently introduced [12] and consist of projecting the 

ipartite connections as described above for the actor-movie net- 

ork: if two given pollinators (plants) share at least one common 

lant (pollinator), an edge is created between them representing 

heir competitive interaction. In both competition scenarios, homo- 

eneous and heterogeneous, the network underlying the interac- 

ions of the dynamical model is not the original bipartite structure, 

ut rather the union of the latter with its one-mode projections. 

While the structure and the dynamics of pure bipartite net- 

orks have been scrutinized over the past years (see, e.g., [1,7] ), 

ittle is known about the statistics of spectral properties of the net- 

orks that are created by the union of the bipartite connections 

ith their one-mode projections. For this reason, and given the 

act the network spectra is intrinsically related with the stability 

f dynamical processes, in this paper we put forward a thorough 

haracterization of the spectra of such networks, bearing in mind 

ossible implications to the dynamics of real plant-pollinator net- 

orks. More specifically, here we characterize the statistics of the 

igenvalues of matrices generated by grouping the adjacency ma- 

rix of random bipartite networks with the matrices obtained from 

heir respective two one-mode projections (see Fig. 1 for an illus- 

ration). Our interest in this network representation stems from the 

act that it mimics the structure of Jacobian matrices of dynamical 

odels describing plant-pollinator communities more closely than 

raditional random matrix ensembles [11,12] . 

We employ three measurements to assess the statistical 

egimes of mutualistic-competitive random networks as a function 

f size and connectivity, namely, the ratio between consecutive 

igenvalue spacings, the Shannon entropy related to the eigenvec- 

ors of the adjacency matrix, and the Randi ́c index. Very recently, 

hese quantities have been successfully applied to the characteri- 

ation of other network ensembles (see, e.g., Refs. [13,14] and ref- 

rences therein). Our scaling analysis reveals that the three mea- 

urements exhibit a universal behavior as a function of the average 

egree. The obtained universal behavior highlights three markedly 
2 
ifferent statistical regimes: at sufficiently low and high connec- 

ivity, the spectral and eigenvector statistics of the networks coin- 

ides with those of the Poisson Ensemble (PE) and the Gaussian 

rthogonal Ensemble (GOE) of Random Matrix Theory (RMT) [15] , 

espectively; for intermediate connectivity, the networks undergo 

 delocalization-to-localization transition that mediates the latter 

egimes. We further show, unexpectedly, that real–world ecological 

etworks follow with a reasonably good agreement the universal 

ehavior reported for the random networks – a result that, as we 

rgue, indicates that such ecological communities might operate in 

 regime of maximal complexity. 

The remainder of this paper is organized as follows: In 

ection 2 we introduce the random network ensemble we study 

nd the measurements used to characterize the network proper- 

ies. Subsequently, in Section 3 we discuss the scaling and the uni- 

ersality properties of the random networks with projected edges. 

e then apply the scaling approach to a set of real-world mutu- 

listic networks, including plant-pollinator networks, in Section 4 . 

ection 5 is dedicated to our conclusion. 

. Network model and measures 

.1. Random mutualistic-competitive networks 

We start with a bipartite network composed by two disjoint 

ets with m and n − m vertices each such that there are no adja- 

ent vertices within the same set, being n the total number of ver- 

ices in the bipartite network. The connectivity between both sets 

s quantified by the parameter α which is the ratio of current ad- 

acent pairs, | E| , over the total number of possible adjacent pairs, 

 (n − m ) ; that is, vertices are isolated when α = 0 , whereas the

ipartite graph is complete for α = 1 . Vertices are connected ran- 

omly. An example of a bipartite network with n = 9 , m = 4 and

= 3 / 10 is shown in Fig. 1 (a). Then, the mutualistic-competitive 

etwork is constructed by establishing connections between ele- 

ents of the same set when they are connected to a common 

ertex of the other set. The mutualistic-competitive network cor- 

esponding to the bipartite network of Fig. 1 (a) is presented in 

ig. 1 (b). 

Here we follow a recently introduced approach under which 

he adjacency matrices of random graphs and networks are rep- 

esented by RMT ensembles; see the application of this approach 

n Erdös-Rényi graphs [16] , random rectangular graphs [17] , β- 

keleton graphs [18] , multiplex and multilayer networks [19] , and 

ipartite networks [20] . Accordingly, we define the elements of the 

 × n adjacency matrix A of a mutualistic network as 

 i j = 

⎧ ⎨ 

⎩ 

√ 

2 εii for i = j , 

εi j if there is an edge between vertices i and j , 

0 otherwise . 

(1) 

e choose εi j as statistically-independent random variables drawn 

rom a normal distribution with zero mean and unity variance. 

lso, εi j = ε ji , since the network is assumed as undirected. We 

ote that the random self-loops and random weights to edges in 

ur RMT adjacency matrix allow us to retrieve well known ran- 

om matrices (that we use as a reference) in the appropriate lim- 

ts: Indeed, according to definition (1) , diagonal random matrices 

re obtained for α = 0 (known as PE in RMT [15] ), whereas the 

OE (i.e., full real and symmetric random matrices [15] ) is recov- 

red when α = 1 . Therefore, a transition from the PE to the GOE 

hould be observed by increasing α from zero to one, for any given 

air (n, m ) . 

In Fig. 2 , we show examples of adjacency matrices of random 

ipartite networks with n = 100 vertices and some combinations 
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Fig. 1. Example of (a) bipartite network representing the mutualistic interactions between two groups for n = 9 (size of the network), m = 4 (size of the smaller set) and 

α = 3 / 10 (connectivity), and (b) the same mutualistic network with its competition edges projected onto each group. 

Fig. 2. Nonzero adjacency matrix elements of bipartite random networks for some combinations of m/n and α: (a) m/n = 1 / 2 and α = 0 . 05 , (b) m/n = 1 / 4 and α = 0 . 75 , (c) 

m/n = 1 / 5 and α = 0 . 1 , (d) m/n = 1 / 10 and α = 0 . 3 . In all cases n = 100 . 

Fig. 3. Nonzero adjacency matrix elements of the mutualistic-competitive random networks corresponding to the bipartite networks of Fig. 2 . 
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f m and α; while in Fig. 3 we present the adjacency matrices 

f the corresponding mutualistic-competitive networks. Note that 

hen labeling the vertices according to the set they belong to, the 

djacency matrices of both bipartite and mutualistic-competitive 

etworks have a 2 × 2 block structure. Notice also that, in contrast 

o bipartite networks, since connections between vertices of the 

ame set are allowed in mutualistic-competitive networks, the di- 

gonal blocks of the corresponding adjacency matrices are not null 

atrices. 

Below we define m (resp. n − m ) as the number of vertices 

f the smaller (bigger) set. In this respect, the case m = n/ 2 is a

imiting case where both sets have the same number of vertices, 

r

3 
 = n − m . Notice that, since in our RMT model the vertices are in-

istinguishable, the case m > n/ 2 is redundant because it is equiv- 

lent to the interchange of the sets. Moreover, the case m = 1 is 

nother limiting case in which the smaller set consists of a single 

ertex. Thus, in what follows we will consider random mutualistic- 

ompetitive networks characterized by the parameter set (n, m, α) 

ith 1 ≤ m ≤ n/ 2 and 0 ≤ α ≤ 1 . 

.2. Spectral and topological measures 

We characterize the spectral and eigenvector properties of the 

andomly-weighted adjacency matrices of mutualistic-competitive 
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etworks by the use of two well-known RMT measures: the ra- 

io between consecutive eigenvalue spacings r [21] and the infor- 

ation or Shannon entropies S [22] , whereas to probe topological 

roperties we use the Randi ́c index R [23] , one of the best studied

opological indices in mathematical chemistry. 

On the one hand, given the ordered spectra { λi } ( i = 

 , . . . , n ) and the corresponding normalized eigenvectors � i , 

.e., 
∑ n 

j=1 | � i 
j 
| 2 = 1 , the ratio r i and the entropy S i are given

y [21,22] 

 i = 

min (λi +1 − λi , λi − λi −1 ) 

max (λi +1 − λi , λi − λi −1 ) 
(2) 

nd 

 i = −
n ∑ 

j=1 

∣∣� i 
j 

∣∣2 
ln 

∣∣� i 
j 

∣∣2 
(3) 

espectively. 

It is pertinent to mention that S, which quantifies the exten- 

ion of eigenvectors in a given basis, has been widely used to 

tudy the localization characteristics of the eigenvectors of random 

raphs and network models. Among the vast amount of studies 

vailable in the literature, we can mention (as relevant examples 

o the present study) that S was used to find the universal pa- 

ameters able to scale the eigenvector properties of multiplex and 
ig. 4. (a-d) Average ratio between consecutive eigenvalue spacings 〈 r 〉 , (e-h) average Shan

for random mutualistic-competitive networks of size n . Four values of the ratio m/n

orizontal dashed lines correspond to the RMT predictions for the (PE) GOE with n = 1

nterpretation of the references to colour in this figure legend, the reader is referred to th

4 
ultilayer networks [19] and bipartite graphs [20] . In contrast, r

as been scarcely used in studies of networks; for a recent ex- 

eption see Ref. [24] , were P (r) served to characterize the perco- 

ation transition in weighted Erdös-Rényi graphs. We believe that 

he lack of use of r in network studies is mainly due to the fact 

hat the introduction of r is relatively recent. In fact, most stud- 

es of spectral properties of random graphs and networks, from a 

MT point of view, are based on the nearest-neighbor energy level 

pacing distribution P (s ) , see e.g. [16] and the references therein. 

owever, here we prefer to use < r > , instead of P (s ) , because

he calculation of the ratios r i ≡ min (s i , s i +1 ) / max (s i , s i +1 ) (with

 i = (λi +1 − λi ) / �, � being the mean eigenvalue spacing) do not 

equire the spectrum unfolding [15] , a task that may become cum- 

ersome mainly for the spectra of real-world systems. Moreover, 

he spectrum unfolding fixes < s > = 1 and forbids the use of < s >

s a complexity indicator; a restriction not applicable to < r > . See 

.g. Ref. [13] where < r > has been recently used as a complexity 

ndicator for directed random networks. 

On the other hand, given a simple connected network with 

dge set E(G ) , the Randi ́c connectivity index is defined as [23] 

 = 

∑ 

u v ∈ E(G ) 

1 √ 

d u d v 
(4) 
non entropy 〈 S 〉 and (i-l) average Randi ́c index 〈 R 〉 as a function of the connectivity 

 are considered: (a,e,i) 1/2, (b,f,j) 1/4, (c,g,k) 1/5 and (d,h,l) 1/10. The (blue) red 

600 . Each symbol was computed by averaging over 10 6 /n random networks. (For 

e web version of this article.) 
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Fig. 5. Normalized measures (a-d) < r > , (e-h) < S > and (i-l) < R > as a function of the connectivity α for random mutualistic-competitive networks of size n . Same curves 

as in Fig. 4 . Horizontal dashed lines in left panels indicate 
〈
X 
〉
= 0 . 5 . 

Fig. 6. Localization–to–delocalization transition point α∗ as a function of n for several values of the ratio m/n . α∗ was extracted from curves of (a) 〈 r 〉 vs. α, (b) 
〈
S 
〉

vs. α

and (c) 
〈
R 
〉

vs. α. The dashed lines are fittings to the data with Eq. (5) ; the values of δ and λ obtained from these fittings are reported in Table 1 and Fig. 9 , respectively. 

Dot-dashed lines, shown to guide the eye, are proportional to n −1 . 
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here u v denotes the edge connecting the vertices u and v , and

 i is the degree of the vertex i . We want to note that the statisti-

al study of R we perform here is justified by the RMT approach 

o mutualistic-competitive networks. This statistical approach, well 

nown in RMT studies, is not widespread in studies of topologi- 

al indices, mainly because topological indices are not commonly 

pplied to random graphs and networks; for recent exceptions 
5 
ee [14,25] where average topological indices have been used as 

omplexity indicators equivalent to traditional RMT measures. We 

lso notice that the random weights we impose to the adjacency 

atrix A , as defined in Eq. (1) , do not play any role in the com-

utation of vertex-degree-based indices. 

From definitions 2 –(4) , when α = 0 (i.e., when all vertices 

f the mutualistic-competitive network are isolated) we have < 
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Fig. 7. Normalized measures (a-d) < r > , (e-h) < S > and (i-l) < R > as a function of the scaling parameter ξ for random mutualistic-competitive networks of size n . Same 

curves of Fig. 5 . 
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α  
 > PE ≈ 0 . 3863 [21] , < S > PE = 0 and < R > PE = 0 . While when

= 1 (i.e. when the mutualistic-competitive network is com- 

lete), < r > GOE ≈ 0 . 5359 [21] , < S > GOE ≈ ln (n/ 2 . 07) [22] and <

 > GOE = n/ 2 . Here and below < · > denotes the average over all

igenvalues/eigenvectors/matrices of an ensemble of mutualistic- 

ompetitive networks. We just want to add that the values of 

 r > reported above for the PE and the GOE limits are valid in

he large–network–size limit only, see Appendix A for a small–

etwork–size analysis of < r > at α = 0 and 1. 

. Scaling and universality 

We now apply a scaling approach that has been successfully 

sed to find universal properties of random graphs and network 

odels, see e.g. [16–20] . We can summarize this approach in the 

ollowing steps: (i) plot the average spectral or topological mea- 

ure < X > as a function of the parameter x , which drives the net-

ork model from the PE to the GOE regimes, so that both limits 

an be well identified; (ii) normalize the average measure < X > 

uch that < X > PE = 0 and < X > GOE = 1 ; (iii) define the PE–to–

OE transition point x ∗ as the value of x such that < X > ≈ C with

 ∈ (0 , 1) ; (iv) define the scaling parameter ξ as the ratio x/x ∗.

hus, the curves < X > vs. ξ should fall one on top of the other; 

hat is, < X > vs. ξ is a universal curve characterized by the scal- 

ng parameter ξ , where ξ can be explicitly written in terms of the 

etwork model parameters. Therefore, once the universal curve is 
6 
ound, it is possible to identify the network parameters setting the 

etwork properties on the PE and GOE regimes. 

Following the steps listed above, in Fig. 4 we present the av- 

rage ratio 〈 r 〉 (upper panels), the average Shannon entropy 〈 S 〉 
middle panels) and the average Randi ́c index 〈 R 〉 (lower panels) 

s a function of the connectivity α for mutualistic-competitive ran- 

om networks characterized by different values of m/n . Each panel 

eports five network sizes ranging from n = 10 0 to 160 0. From this

gure, it is clear that all curves 〈 X 〉 vs. α show the transition from 

he PE to the GOE (here and below X represents the three mea- 

ures reported in this work: r, S and R ). 

Then, in Fig. 5 , we plot again the curves of Fig. 4 but normal-

zing 〈 X 〉 such that < X > PE = 0 and < X > GOE = 1 . That is, < r > ≡
 < r > − < r > PE ] / [ < r > GOE − < r > PE ] , < S > ≡< S > / < S > GOE 
nd < R > ≡< R > / < R > GOE . We note that while we use <

 > GOE ≈ ln (n/ 2 . 07) and < R > GOE = n/ 2 , due to small–network–

ize effects, the values of < r > PE and < r > GOE are computed 

umerically; see Appendix A . Fig. 5 shows that the net effect of 

ncreasing the network size n is the displacement of the curves 

X 
〉

to the left on the α-axis. Moreover, the fact that the curves 

re displaced the same amount (in log scale) when doubling n is 

 signature of the scaling of 
〈
X 
〉

with n . Thus, in order to look 

or the corresponding scaling parameter we characterize the po- 

ition of the curves 
〈
X 
〉

vs. α by extracting the localization–to–

elocalization transition point α∗ that we define as the value of 

for which 

〈
X 
〉
≈ 0 . 5 ; i.e., the value of α such that 

〈
X 
〉

is at half



C.T. Martínez-Martínez, J.A. Méndez-Bermúdez, T. Peron et al. Chaos, Solitons and Fractals 153 (2021) 111504 

Fig. 8. Normalized measures (a) < r > , (b) < S > and (c) < R > as a function of the scaling parameter ξ for random mutualistic-competitive networks of size n = 10 0 0 and 

several ratios m/n . The vertical dashed lines at ξ = 1 / 10 and ξ = 10 mark the onset of eigenvector delocalization and the onset of the GOE regime, respectively. Crosses 

indicate the values of (a) < r > , (b) < S > and (c) R of 68 pollination networks (black), 49 host-parasite networks (red), 34 seed dispersal networks (blue) and 9 food webs 

(green) from the Web of Life ecological networks database ( http://www.web- of- life.es/ ). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 9. Parameter λ as function of the ratio m/n . λ (symbols) was extracted from the fittings, with Eq. (5) , of the curves of Fig. 5 : (a) 〈 r 〉 vs. α, (b)
〈
S 
〉

vs. α and (c)
〈
R 
〉

vs. α. 

The dashed lines are the best power-law fittings to the data: λr = 2 . 34(m/n ) −0 . 68 , λS = 1 . 97(m/n ) −0 . 65 and λR = 0 . 31(m/n ) −1 . 13 . 

Table 1 

Values of the power δ obtained from the fittings, with Eq. (5) , of the curves 

α∗(X ) vs. n of Fig. 6 . 

Measure 

m/n 〈 r 〉 〈
S 
〉 〈

R 
〉

1/2 0.979 1.006 0.998 

1/3 1.001 1.009 1.001 

1/4 1.011 1.012 0.994 

1/5 1.011 1.014 0.996 

1/6 1.007 1.015 0.998 

1/7 1.009 1.019 0.998 

1/8 1.015 1.025 1.003 

1/9 1.017 1.022 0.997 

1/10 1.022 1.018 0.987 

1/20 1.018 1.003 0.976 
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f the transition between the PE and the GOE. In Fig. 6 , we report

he localization–to–delocalization transition point α∗ as a function 

f n for several values of the ratio m/n . Indeed, the linear trend of

he data (in log-log scale) in Fig. 6 implies a power-law relation of 

he form 

∗ = λn 

−δ . (5) 

s can be observed in Fig. 6 (see the dashed lines), Eq. (5) pro-

ides very good fittings to the data. The values of the power δ ob- 

ained from the fittings in Fig. 6 (which are reported in Table 1 ) al-

owed us to conclude that δ ≈ 1 for all the combinations of (n, m ) 
7 
onsidered here. So, we write 

= 

α

α∗ ∝ αn . (6) 

herefore, by plotting again the curves 
〈
X 
〉

now as a function of 

we observe that curves for different mutualistic network sizes n 

ollapse on top of a single curve, see Fig. 7 . That is, for a given

atio m/n , ξ fixes the spectral and topological properties of our 

andomly-weighted mutualistic-competitive networks. 

It is important to add that even though we were able to scale 

he average ratio between consecutive eigenvalue spacings, the av- 

rage Shannon entropy and the average Randi ́c index of random 

utualistic-competitive networks, as shown in Fig. 7 , there is still 

 dependence (weak, though) of the curves 
〈
X 
〉

vs. ξ on the ratio 

/n . Indeed, a similar dependence was reported for random bipar- 

ite networks in Ref. [20] . To illustrate this weak dependence, in 

ig. 8 we report curves 
〈
X 
〉

vs. ξ for several values of m/n . Here, 

e can observe that the larger the ratio m/n , the sharper the PE–

o–GOE transition. However, it is relevant to add that our interest 

s focused on large values of m/n since we have observed that most 

eal–world mutualistic networks are characterized by ratios in the 

nterval (1 / 3 , 1 / 2) ; see the next Section. 

From Figs. 7 and 8 we can conclude that the average proper- 

ies of the random mutualistic-competitive network model studied 

ere coincide with those of the PE and the GOE when ξ < 1 / 10

nd ξ > 10 , respectively; while a PE–to–GOE transition regime ap- 

roximately appears for 1 / 10 < ξ < 10 . Indeed, the vertical dashed 
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ines at ξ = 1 / 10 and ξ = 10 in Fig. 8 mark the onset of eigenvec-

or delocalization and the onset of the GOE regime, respectively. 

. Real–world mutualistic-competitive networks 

We now validate the scaling approach to mutualistic- 

ompetitive random networks, developed in the previous section, 

y contrasting the obtained universal curves for < r > , < S > and 

 R > with the spectral and topological properties of real–world 

etworks. 

To this end we chose a number of pollination networks, 

ost-parasite networks, seed dispersal networks and food webs 

rom the Web of Life ecological networks database ( http://www. 

eb- of- life.es/ ) with sizes ranging from n ∼ 10 to n ∼ 10 0 0 ; see

he adjacency matrices of some of these mutualistic networks in 

ppendix B . For each of these networks we computed < r > , < S >

nd R . We note that we imposed random weights to the adja- 

ency matrix elements of the real–world mutualistic-competitive 

etworks, such that the obtained adjacency matrices are similar 

o those of our RMT model. However, we stress that the compu- 

ation of R is independent of the definition of the adjacency ma- 

rix. Then, we computed the value of ξ that characterizes each of 

he real–world networks. Moreover, notice that λ ≡ λ(m/n ) , thus 

or a given ratio m/n we obtain λ from λr = 2 . 34(m/n ) −0 . 68 , λS =
 . 97(m/n ) −0 . 65 and λR = 0 . 31(m/n ) −1 . 13 . Here, the functions λr,S,R 

re power-law fittings to the data, λ vs. m/n , reported in Fig. 9 .

pecifically, 50% of the 160 chosen real-world networks have a m/n 

atio in the interval (1 / 3 , 1 / 2) ; while the smallest m/n ratio of our

et of real-world networks is about 1 / 12 . 

Finally, in Fig. 8 we report the values of < r > , < S > and R

f real–world networks on top of the universal curves obtained 

rom our RMT approach. Remarkably, we observe a reasonably 

ood correspondence between the spectral and topological proper- 

ies of real–world mutualistic-competitive networks (symbols) and 

he corresponding statistical predictions (full lines). 

. Conclusions 

In this paper, we have applied a statistical approach, based on 

andom matrix theory (RMT) techniques, to mutualistic random 

etworks with projected edges that emulate intra-group competi- 

ive interactions. Specifically, we have proposed a random matrix 

nsemble that represents the adjacency matrices of mutualistic- 

ompetitive networks composed by two vertex sets of sizes m and 

 − m . Thus, the parameters of the RMT model are: the network 

ize n , the size of the smaller set m (with 1 ≤ m ≤ n/ 2 ) and the

onnectivity between the two sets α ∈ [0 , 1] forming the mutual- 

stic system. We focused on the spectral, eigenvector and topologi- 

al properties of the random network model by computing, respec- 

ively, the ratio of consecutive eigenvalue spacings r, the Shannon 

ntropy of the eigenvectors S and the Randi ́c index R . 

First, based on a scaling study, we defined a scaling parame- 

er ξ ∝ αn , see Eq. (6) , that fixes the average spectral, eigenvector

nd topological properties of the random network model. Specif- 

cally, we reported universal curves < X > vs. ξ (where X repre- 

ents r, S and R ) that show a weak dependence on the parame- 

er m ; see Figs. 7 and 8 . Thus, our study provides a way to pre-

ict the average properties of random mutualistic-competitive net- 

orks once ξ is known. On the one hand, concerning the adja- 

ency matrix eigenvectors: For ξ < 1 / 10 the eigenvectors are lo- 

alized, < S > ≈ 0 , when ξ > 10 the eigenvectors are extended, < 

 > ≈ ln (n/ 2 . 07) , whereas the localization–to–delocalization tran- 

ition occurs in the interval 1 / 10 < ξ < 10 . Equivalently, ξ ≈ 1 / 10

arks the onset of eigenvector delocalization (where the adjacency 

atrix eigenvectors cover more than just one vertex in the net- 

ork), while ξ ≈ 10 marks the onset of the GOE regime (where the 
8 
djacency matrix eigenvectors are extended over all the vertices 

orming the network). In this respect, the PE–to–GOE transition re- 

orted in Section 3 corresponds to a localization–to–delocalization 

ransition. On the other hand, concerning the topological proper- 

ies of the network (that we characterize by the use of the Randi ́c

ndex): For ξ < 1 / 10 most vertices in the mutualistic-competitive 

etwork are isolated, < R > ≈ 0 , while for ξ > 10 the network ac-

uires the properties of a complete network, < R > ≈ n/ 2 ; that is,

he transition from isolated vertices to a complete–like behaviour 

ccurs in the interval 1 / 10 < ξ < 10 . 

Second, we verified our statistical predictions by contrasting 

hem with the properties of real–world networks. Indeed, we 

ound a reasonably good correspondence between the properties of 

eal–world mutualistic-competitive networks and the correspond- 

ng < X > vs. ξ universal curves, as can be clearly seen in Fig. 8 . Of

urther interest, we observed that the real–world networks, even 

hough characterized by values of ξ below the onset of the GOE 

egime, displayed spectral, eigenvector and topological properties 

ery close to those of the GOE. This may be understood as a sig- 

ature of maximal complexity (i.e. maximal chaos in RMT terms) 

n the real–world mutualistic-competitive networks we analyzed 

ere. 
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ppendix A. Small–network–size effects 

In Fig. 4 we reported 〈 r 〉 , 〈 S 〉 and 〈 R 〉 as a function of the 

onnectivity α for mutualistic-competitive random networks of 

izes n ≥ 100 characterized by different ratios m/n . There, small–

etwork–size effects are evident for 〈 r 〉 ; that is the curves 〈 r 〉 vs. α
o not approach < r > PE ≈ 0 . 3863 and < r > GOE ≈ 0 . 5359 when

→ 0 and α → 1 , respectively. As expected, small–network–size 

ffects are even more pronounced for 〈 r 〉 when n < 100 , as can be 

learly seen in Fig. 10 (a). For completeness in Figs. 10 (b) and 10 (c)

e also present 〈 S 〉 and 〈 R 〉 , respectively, as a function of the 

onnectivity α for mutualistic random networks of sizes n ≤ 100 . 

owever, for 〈 S 〉 and 〈 R 〉 we do not observe important small–

etwork–size effects. In Fig. 10 we used m/n = 1 / 2 , but other ratios

/n produce similar curves. 

In particular, as part of the scaling approach to mutualistic- 

ompetitive random networks developed in Section 3 , we normal- 

zed the spectral and topological measures studied in this paper. 

pecifically, we defined < r > ≡ [ < r > − < r > PE ] / [ < r > GOE − <

 > PE ] , < S > ≡< S > / < S > GOE and < R > ≡< R > / < R > GOE .

herefore, in Fig. 11 we present 〈 r 〉 , 〈 S 〉 and 〈 R 〉 at α = 0 and 

= 1 as a function of n and compare them with the correspond- 

ng PE and GOE predictions, respectively. Indeed, since we observe 

ood correspondence between 〈 S 〉 and 〈 R 〉 at α = 1 with the cor- 

esponding GOE predictions, see Figs. 11 (b) and 11 (c), we used 

 S > GOE ≈ ln (n/ 2 . 07) and < R > GOE = n/ 2 to compute < S > and
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Fig. 10. (a) Average ratio between consecutive eigenvalue spacings 〈 r 〉 , (b) average Shannon entropy 〈 S 〉 and (c) average Randi ́c index 〈 R 〉 as a function of the connectivity α

for random mutualistic-competitive networks of sizes n ≤ 100 . Here, m/n = 1 / 2 has been considered. Each symbol was computed by averaging over 10 6 /n random networks. 

The (blue) red dashed lines in (a-c) correspond to the RMT predictions for the (PE) GOE. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 11. (a) 〈 r 〉 , (b) 〈 S 〉 and (c) 〈 R 〉 at α = 0 (circles) and α = 1 (squares) as a function of the graph size n . Here, m/n = 1 / 2 has been considered. The blue [red] dashed lines 

correspond to the RMT predictions for the PE [GOE]: < r > PE ≈ 0 . 3863 , < S > PE = 0 and < R > PE = 0 [ < r > GOE ≈ 0 . 5359 , < S > GOE ≈ ln (n/ 2 . 07) and < R > GOE = n/ 2 ]. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Top panels: Adjacency matrices of real–world bipartite networks from the Web of Life ecological networks database ( http://www.web- of- life.es/ ). (a) Seed dispersal 

network M_SD_029 ( n = 9 , m = 4 , α = 0 . 5 ), (b) seed dispersal network M_SD_030 ( n = 9 , m = 5 , α = 0 . 55 ), (c) host parasite network A_HP_015 ( n = 10 , m = 3 , α = 0 . 571 ) 

and (d) host parasite network A_HP_035 ( n = 13 , m = 6 , α = 0 . 357 ). Lower panels: Corresponding mutualistic-competitive adjacency matrices. 
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Fig. 13. Top panels: Adjacency matrices of real–world bipartite networks from the Web of Life ecological networks database ( http://www.web- of- life.es/ ). (a) Pollination 

network M_PL_051 ( n = 104 , m = 14 , α = 0 . 13 ), (b) seed dispersal network M_SD_034 ( n = 121 , m = 33 , α = 0 . 139 ), (c) food web network FW_007 ( n = 90 , m = 42 , α = 0 . 109 ) 

and (d) pollination network M_PL_002 ( n = 107 , m = 43 , α = 0 . 071 ). Lower panels: Corresponding mutualistic-competitive adjacency matrices. 

Fig. 14. Top panels: Adjacency matrices of real–world bipartite networks from the Web of Life ecological networks database ( http://www.web- of- life.es/ ). (a) Food web 

network FW_008 ( n = 498 , m = 249 , α = 0 . 0534 ), (b) pollination network M_PL_054 ( n = 431 , m = 113 , α = 0 . 022 ), (c) seed dispersal network M_SD_022 ( n = 317 , m = 110 , 

α = 0 . 049 ) and (d) pollination network M_PL_056 ( n = 456 , m = 91 , α = 0 . 026 ). Lower panels: Corresponding mutualistic-competitive adjacency matrices. 
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 R > , respectively. In contrast, the RMT predictions for < r > in

he PE and GOE regimes are only approached when n > 10 0 0 ; see

ig. 10 (a). Thus, the values of < r > PE and < r > GOE used to com-

ute < r > in Section 3 were calculated numerically for the given 

etwork sizes used. 

ppendix B. Adjacency matrices of real–world networks 

In Section 4 we validated the scaling approach to mutualistic- 

ompetitive random networks developed in Section 3 by contrast- 

ng the obtained universal curves for < r > , < S > and < R > with

he spectral and topological properties of real–world networks. 

ere, in Figs. 12 , 13 and 14 we present the actual adjacency 

atrices of some of the real–world networks from the Web of 

ife ecological networks database ( http://www.web- of- life.es/ ). In 

igs. 12, 13 and 14 we report some examples of small–size ( n ∼
0 ), medium–size ( n ∼ 100 ) and large–size ( n ∼ 500 ) networks, 
10 
espectively. For completeness, in each figure we show bipartite 

djacency matrices (upper panels) as well as the corresponding 

utualistic-competitive adjacency matrices (lower panels). 
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