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From subcritical behavior to a correlation-induced
transition in rumor models
Guilherme Ferraz de Arruda 1✉, Lucas G. S. Jeub 1, Angélica S. Mata 2, Francisco A. Rodrigues3 &

Yamir Moreno 1,4,5

Rumors and information spreading emerge naturally from human-to-human interactions and

have a growing impact on our everyday life due to increasing and faster access to infor-

mation, whether trustworthy or not. A popular mathematical model for spreading rumors,

data, or news is the Maki–Thompson model. Mean-field approximations suggested that this

model does not have a phase transition, with rumors always reaching a fraction of the

population. Conversely, here, we show that a continuous phase transition is present in this

model. Moreover, we explore a modified version of the Maki–Thompson model that includes

a forgetting mechanism, changing the Markov chain’s nature and allowing us to use a ple-

thora of analytic and numeric methods. Particularly, we characterize the subcritical behavior,

where the lifespan of a rumor increases as the spreading rate drops, following a power-law

relationship. Our findings show that the dynamic behavior of rumor models is much richer

than shown in previous investigations.
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Rumor spreading is a spontaneous process that emerges
from social interactions and can occur in real or virtual
environments. Electronic media has increasingly con-

tributed to the impact of this type of process on people’s daily
lives. More concretely, these processes include, but are not limited
to, propagation of information or gossips and can even be used to
model fake news1–5. However, the relevance of rumor models is
not limited to social context. Indeed, this class of models inspired
and constituted the theoretical basis for the so-called gossip
protocol6, which is a powerful paradigm used in the design of
decentralized distributed protocols that are reliable and efficient7.
The applications of this protocol are quite wide, including Peer-
to-Peer Networks (P2P)7–9 and specific tasks as failure
detection7,10, to implement garbage collection7,11, to compute
aggregate information7,12, and to allocate resources7,13. More-
over, specific real-life examples, include the Gnutella P2P
Network9 and cryptocurrencies networks as Bitcoin14,15 or
Ethereum16 and their derivations. Although these examples are
easily relatable to our daily lives, surprisingly, this class of pro-
cesses is much less explored than other stochastic dynamics17,18.

Due to its practical relevance, it is essential to understand the
evolution mechanism of rumor spreading on heterogeneously
connected populations. The first rumor model was introduced in
1964 by Daley and Kendall (DK)19, where the population is
assumed to be homogeneously connected. The individuals are
classified into one of three states: (i) ignorant, i.e., someone that
does not hold the information; (ii) spreader, i.e., someone that
knows the rumor and is willing to spread it; and (iii) stifler, i.e.,
someone who knows the rumor but does not spread it. To be
more specific, the terminology ignorant is widely used in rumor
models to indicate someone unaware of the news in the sense that
she/he did not hear about the news, this means someone who has
not yet been exposed to the rumor. In DK model, the transitions
are based on contact between individuals. A transmission occurs
when there is a contact between a spreader and an ignorant, while
an annihilation occurs upon a contact between two individuals
who are aware of the rumor. In the DK model, the contacts are
considered undirected, and a contact between two spreaders
would result in the generation of two stiflers. For mathematical
convenience, in 1973, Maki and Thompson (MT)20 slightly
changed the annihilation mechanism by considering directed
contacts. In other words, when a spreader contacts another
spreader, just the individual that initiated the contact turns into a
stifler. This small change allowed for a series of analytical results.
Another major advance was its generalization to complex net-
works in 200421, where the authors used a mean-field approach to
show that no phase transition is predicted.

Despite having different purposes, rumor and disease spread-
ing models are mathematically similar. Goffman and Newill were
the first to notice the analogy between the spreading of a disease
and information dissemination19,22. Both processes are typically
modeled by compartmental models, where the population is
divided into mutually exclusive and exhaustive classes. Also, the
spreading of disease and rumor processes are often modeled in
the same way (this is the case of SIS, SIR, SIRS, MT, and DK
models). However, the removal mechanism is usually different. In
rumor models (DK and MT), this mechanism is driven by the
contact between individuals aware of the information (spreaders
and stiflers), while in the epidemic case, it is spontaneous. This
mechanism was initially proposed in ref. 19 and was motivated by
the hypothesis that an active spreader stops telling the rumor
because she/he learns that it has lost its ‘news value.’ The authors
called this mechanism the “reluctance to tell stale news.” Con-
versely, if one considers that the removal would be only due to a
‘forgetting’ mechanism (spontaneous), this process would follow
the same equations as a SIR epidemic spreading model.

Mean-field methods are the most common approach for the
analysis of spreading processes. They have proved to be useful for
understanding the behavior of spreading processes in many
contexts, especially in complex networks17,18,21,23–29. However,
from the mean-field framework, one would expect that the MT
rumor model does not have a phase transition21,25. This behavior
is very intriguing, especially if compared with the SIR (Suscep-
tible-Infected-Recovered) epidemic spreading processes. At first
glance, these two processes are similar as both have infinitely
many absorbing states. However, the two models have very dif-
ferent annihilation mechanisms. In rumor models, this mechan-
ism is driven by the contact between individuals aware of the
information, while in the epidemic case, it is spontaneous. The
epidemic model is very well characterized, with most dynamics
converging exponentially to the absorbing state in the subcritical
regime30 and a well-defined phase transition17,18,25–28,30–32.
Surprisingly, the same can not be said about rumor models in
networks as, to the best of our knowledge, up to now, the results
regarding the absence of a phase transition were not challenged
nor formally proven. Recently, there have been several works
about spreading of rumors investigating new compartmental
models with practical applications such as, for example, fake news
or other dissemination processes in online social networks33–38.
However, these works are concerned with proposing more rea-
listic models without focusing on the phase transition analysis of
classical models such as the MT model.

Perhaps due to the similarities with the epidemic processes or
the apparent absence of phase transitions, the MT model
remained relatively underexplored. However, one must not forget
that the mean-field employed in refs. 21,25 assumes that the states
of the nodes are independent, which, as we will show, is not
reasonable in rumor models. Indeed, mean-field approaches for
the MT model in networks presented a relatively high error
compared to Monte Carlo simulation18. To the best of our
knowledge, just a few works tackled the study of phase transitions
in the MT model. In ref. 39, the authors explored a k-regular ring
with the insertion of additional edges. In this structure, they
proved the existence of a transition between two regimes, one
where the final number of stiflers is at most logarithmic with
respect to the population size, and another where the final
number of stiflers grows algebraically with the population size.
Recently, a transition in the MT model was reported, and its
nature was associated with the spatial pattern of connections5.
More specifically, the transition was shown to depend on the
number of interactions between subpopulations5. However, we
observe that this transition is more general, where the structure
determines some critical properties, e.g., the critical point, but not
the existence of the transition. The transition exists regardless of
the structure. We notice that for some structures the transition
might be vanishing in the thermodynamic limit but exists in a
finite setup.

Here, we critically revisit the results in the literature using non-
mean field methods together with Monte Carlo simulations. First,
in the section “Maki–Thompson model” (δ= 0), we show that the
MT model presents a phase transition, which is at odds with most
classical results, impacting on more than 50 years of research.
Furthermore, we find a very particular power-law behavior in its
subcritical regime, where the survival time of a rumor diverges as
the spreading rate decreases. The subcritical behavior explains
why the mean-field approaches fail to predict the transition. To
better understand this class of processes, we propose a minor
modification in the standard model, changing the process from
infinitely many absorbing states to a single absorbing state (the
entirely ignorant population), which preserves the MT model’s
essence and allows additional analytical and simulation tools. It is
important to emphasize that, although the introduction of a
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spontaneous transition from stifler to ignorant affects the number
of absorbing states in the model, this should not change its
universality class. As discussed in refs. 40,41 for the contact pro-
cess and the SIS model, respectively, the authors showed that the
universality class seems to depend only on the locality of the
interactions and not on whether there is a single or infinitely
many absorbing states. This modification allows us to obtain a
statistical characterization of our models with high precision,
presented in sections “Modified rumor model: Critical behavior”
and “Modified rumor model: Subcritical behavior”. Aside from
the numerical aspects, we also provided a theoretical explanation
for our findings in the section “Modified rumor model: Critical
behavior”. Using asymptotic analysis, in the section “Modified
rumor model: Asymptotic analysis”, we were able to show that
the first-order mean-field approaches cannot predict a phase
transition. This limitation can be related to the non-monotonic
behavior of the lifespan as a function of λ present in the sub-
critical behavior. On the other hand, by using the properties of
Poisson processes and tree-like approximations, we are able to
characterize both the sub-critical and the critical regimes. We
summarize our work and present our final remarks in the
section “Discussion”.

Results
Rumor models. Let us first define our model. In alignment with
the DK and MT models, here we also have the same set of states
(ignorant, spreader, or stifler), which are modeled by associating
to each node i three Bernoulli random variables, Xi, Yi, and Zi. If
node i does not know the rumor, it is classified as an ignorant
(Xi= 1, Yi= Zi= 0). If it knows the rumor and is spreading it, it
is called a spreader (Yi= 1, Xi= Zi= 0). However, if it knows the
rumor but does not spread it, it is classified as stifler (Zi= 1,
Xi= Zi= 0). Note that Xi+ Yi+ Zi= 1, implying that, for a fixed
node, only one variable will be one, while the others will be zero.
The spreading evolves through the contact between nodes defined
by an undirected network, which is codified by the adjacency
matrix A, whose entries Aij are equal to one if there is an edge
between nodes i and j and zero otherwise. Our process is defined
in continuous-time as a collection of Poisson processes. If the
contact is between a spreader and an ignorant, the second node
will learn the rumor and become another spreader at rate λ. On
the other hand, if the contact happens between a spreader and
someone that already knows the rumor (spreader or stifler), then
the spreader that initiated the contact will lose interest in the
rumor, thus becoming a stifler at a rate α. We also introduce a
forgetting mechanism, where each stifler spontaneously becomes
ignorant at a rate δ. We assume that only stiflers can forget the
rumor as spreaders are actively trying to transmit the informa-
tion. Denoting the state of the node i as ðXi;Yi;ZiÞi, the above
described local rules are expressed as

ð0; 1; 0Þi þ ð1; 0; 0Þj !
λ ð0; 1; 0Þi þ ð0; 1; 0Þj;

ð0; 1; 0Þi þ ð0; 1; 0Þj !
α ð0; 1; 0Þi þ ð0; 0; 1Þj;

ð0; 1; 0Þi þ ð0; 0; 1Þj !
α ð0; 0; 1Þi þ ð0; 0; 1Þj;

ð0; 0; 1Þi !
δ ð1; 0; 0Þi:

ð1Þ

A graphical representation of these transitions is presented in
Fig. 1. Please see the Supplementary Videos for a visual example
of the temporal evolution of the Monte Carlo Simulations for the
standard Maki–Thompson model near the critical point and in
the supercritical regime.

We remark that, if δ= 0, we recover the original MT model.
Notice that δ can be interpreted either as a forgetting mechanism
or, for evolving rumors as, individuals who do not know the

rumor’s current state that is, someone that has not been informed
since the rumor changed. In this case, we could simplify the
process by treating an updated rumor as, in fact, a new one.
Either way, the essence of the process is captured by the forgetting
mechanism (with parameter δ).

In summary, our model combines the “reluctance to tell stale
news”, the annihilation by contact, with the eventual forgetting of
the rumor. The latter transition assumes that one can only forget
a rumor if she/he is not spreading it. The removal mechanism is
the central difference between our model and the SIRS model.
Namely, in our modified model, the transition from spreaders to
stiflers depends on a interaction-based removal mechanism, while
in the disease case, this transition is spontaneous. Although these
models share similar features, we observed that their differences
are enough to generate a different behavior, which is especially
clear in the subcritical regime. In this regime, the SIRS has an
exponential decay, while our modified rumor model presents a
power-law decay to the absorbing state.

From a Markovian point of view, the modified model has a
single absorbing state, while the original MT model has infinitely
many absorbing states. In other words, by including of the

transition Zi !
δ
Xi only the rumor-free state in which all the

individuals are ignorant (i.e., Xi= 1 for all i∈ {1, 2,…N}) traps
the dynamics. Note that, for the MT model any state in which
Yi= 0 for all i∈ {1, 2,…N} is absorbing. In this case, as the
system size increases, the number of absorbing states also
increases. However, from a practical point of view, single
absorbing state dynamics are easier to deal with as we can
employ the quasi-stationary algorithm42 (for more, see sec-
tion “Monte Carlo simulations”) and the lifespan method43 (for
more, see section “The lifespan method”), allowing for a more
precise characterization of the process.

To analyze the model, we first need to define a phase transition
and corresponding critical point in our context. As MT and SIR
dynamics have infinitely many absorbing states, in this case, the
critical point is defined as the parameter that separates two
scaling regimes. Before this point, the final number of stiflers (or
recovered in the SIR) when the process reaches an absorbing state
does not scale with the system size and hence its fraction goes to
zero in the thermodynamic limit. After the critical point, the
number of stiflers (recovered) scales with the system size. On the
other hand, for processes like SIS (Susceptible-Infected-

Fig. 1 Graphical representation of the Maki Thompson and our modified
model for each node. In this figure, the curly arrows represent transitions
driven by contact, while the normal arrow represents a spontaneous
transition. To simplify the notation, the states of the nodes are represented
in the center of the circles, which show the only Bernoulli random variable
that is equal to one.
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Susceptible) and our modified MT model with δ > 0 where we
have a single absorbing state (disease-free state), the critical point
is defined as the point where above it we have an active state in
the thermodynamic limit, and below it, the system goes to the
absorbing state in the thermodynamic limit. Note that our model
has infinitely many absorbing states if δ= 0 and a single
absorbing state if δ > 0.

To characterize the MT model, we can simulate the process
beginning with many different initial conditions and measure the
final fraction of stiflers and the time necessary to reach the
absorbing state. Note that the initial condition must correspond
to a single spreader in an ignorant population to capture the
transition. Thus, the initial spreader node changes in the different
independent runs of our simulation. Formally, the quantities of
interest can be defined as

ρZ ¼ ∑N
i¼1 Ziðt ! 1Þ

N

� �
; ð2Þ

τ ¼ inf t ∑
N

i¼1
YiðtÞ ¼ 0

����
� �� �

; ð3Þ

where inf ð�Þ is the infimum and �h i is the average among
simulations. In this context, ρZ measures how far the rumor
spreads, while τ measures how fast it spreads. If δ > 0, our
modified model has a single absorbing state, and it thus does not
make sense to characterize the behavior of the model based on the
final state as in Eqs. (2) and (3). Instead, we measure how far the
rumor spreads by estimating the density of spreaders, ρY, in the
metastable state using the quasi-stationary algorithm42 (for more,
see section “Monte Carlo simulations”). Further, the time to reach
the absorbing state, τ (see Eq. (3)), diverges exponentially in the
supercritical regime when δ > 0. We instead estimate the lifespan
of “finite” realizations, τf, using the method proposed in ref. 43

(for more, see section “The lifespan method”).
We remark that both the MT model and our modified version

are represented by a continuous-time Markov chain with 3N

possible micro-states. Thus, it is theoretically possible to write the
infinitesimal generator, leading to a linear system that solves these
processes exactly. However, this is not possible in practice due to
the prohibitive computational cost. Notice that this is the case of
the SIR model or any three-state dynamics. Note also that the
concept of phase transitions is only valid in the thermodynamic
limit. However, as it is commonly done in complex
systems17,18,21,24,26, we also use the term phase transition in
finite systems as we observe two different scaling behaviors, as
mentioned above. Despite the fact that all our simulations are
performed in a finite system, for this theoretical reason, most of
our analysis implicitly assumes the thermodynamic limit. The
exception here is section “Modified rumor model: Asymptotic
analysis”, which follows an individual-based approach.

Maki–Thompson model (δ= 0). Our first main result is showing
that the MT model has a phase transition. Figure 2 shows the
average fraction of stiflers ρZ as a function of λ in the standard
MT model with α= 1.0 for random regular networks with dif-
ferent sizes. In this network, all nodes have the same number of
neighbors 〈k〉k, and the connections between them are made at
random, avoiding both self and multiple connections. We observe
that, as the system size increases, for small λ the fraction of stiflers
decreases with system size, whereas for large λ it is larger than
zero and weakly dependent on the system size (see Fig. 2 for an
example). Note that, as we increase the system size, for a small λ
regime, i.e., λ < λc, where λc is the critical point, the fraction of
stiflers goes to zero. On the other hand, for the larger λ regime,
i.e., λ > λc, the curves converge to the value of the fraction in the

thermodynamic limit. This behavior suggests a phase transition in
the MT model as a function of λ. Complementary to the phase
diagram, in Fig. 3, we show the corresponding lifespan. For a
continuous phase transition, the peak of lifespan diverges in the
thermodynamic limit43,44. By comparing Figs. 2 and 3 we can see
that the curves for the order parameter meet at the point in which
the lifespan diverges. This behavior is compatible with a con-
tinuous phase transition43,44. Moreover, we also observe an
unexpected subcritical behavior, where the lifespan increases as λ
decreases. For the sake of comparison, in an SIS or SIR dynamics
the lifespan would be an increasing function of λ in the subcritical
regime. Although these results are in striking contradiction with
the mean-field approximations17,18,21,25, we highlight that the
mean-field approach neglects correlations between node states
which are crucial in rumor models given the contact-driven sti-
fling mechanism. Further, the first-order mean-field approxima-
tion is not accurate for rumor models18.

Modified rumor model: Critical behavior. To better understand
the transition in rumor models, we move to our modified model
and concentrate our efforts on the α≫ δ regime, which includes
the MT model. In this case, in the transient period, we can neglect
the forgetting transitions and assume that there are only two
competing mechanisms, the spreading and the stifling. Thus, for

Fig. 2 Phase diagram for the standard MT model. Results for α= 1 and
different sizes on a random regular networks with 〈k〉k= 10.

Fig. 3 Time to reach the absorbing state for the standard MT model.
Results for α= 1 and different sizes on random regular networks with
〈k〉k= 10. The dashed line follows τf ~ λ−1.
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locally tree-like networks and near the absorbing state, we can
estimate the expected number of newly informed nodes that
result from the initial spread of the rumor to a node of degree k.
Note that, at least one spreading event is required to reach the
absorbing state from an initial state with one informed node due
to the contact-driven stifling process. Formally, we have the fol-
lowing recurrent expression

qkðiÞ ¼
ðk�iÞλ

iαþðk�iÞλ i ðiþ1Þα
ðiþ1Þαþðk�i�1Þλ þ qkðiþ 1Þ

h i
if i < k

0 otherwise;

(

ð4Þ
where qk(i) is an iterative expression that calculates the expected
number of newly informed individuals in a process where the
seed has k neighbors and, among them i are spreaders. This
quantity should be iterated k times and accounts for: (a) the
probability of spreading the rumor to one of its k− i available
neighbors (ignorants), ðk�iÞλ

iαþðk�iÞλ; which is multiplied by (b) the
probability that the process stops through a stifling event due to
one of its i spreader neighbors, i ðiþ1Þα

ðiþ1Þαþðk�i�1Þλ, (c) or that the
process continues, which is encoded in the term qk(i+ 1). In the
case of the MT model on an infinite tree, the rumor propagation
is exactly described by a branching process45. Here, we assume
that each node’s degree is sampled from a fixed degree distribu-
tion that is independent of the node and that there are no cor-
relations between the degrees of neighboring nodes. By averaging
over the degree distribution, the condition that establishes the
transition between a phase where the rumor dies out with
probability 1 and a phase where there is a non-zero probability of
infinite propagation [45 Theorem 1, Chap. I] is

qð1Þ ¼ qkð1Þ
� �

k > 1; ð5Þ
where 〈⋅〉k is the expectation on the degree distribution. We
remark that Eq. (5) is not a closed expression, but can be
numerically solved.

In other words, Eq. (4) estimates the expected number of newly
informed individuals as a result from a single initial spreader
event by weighting the probabilities that the rumor stops
(accounted by item (a)) or that it continues the spreading
(accounted by qk(i+ 1)). Moreover, the transition can be
obtained from the condition at which the expected number of
newly informed nodes is larger than one, i.e., are more likely to
spread the information than to stop the spreading. Note also that
this approximation is based on the fact that only a single event
occurs at a time, which is a property of continuous Markov
chains.

In Fig. 4 we compare the solution of q(1) with Monte Carlo
critical point estimations for random regular networks with
〈k〉k= 10 for both δ= 0 and δ= 1 (see section “Monte Carlo
simulations” for the simulation details and the Supplementary
Information, Sec. I, for the individual susceptibility curves and
critical point estimations). In the same figure, we also present the
naive estimation, considering a first-order approximation, given
as λ� ¼ α

ðhkik�1Þ. Note that this expression accounts for the
competition between the spreading processes, with the rate
2(〈k〉k− 1), and the annihilation, with the rate 2α. Moreover, λ* is
the rate at which spreading and stifling have the same probability.
So, from this approximation, one would expect that, if λ > λ*, the
process can spread to a fraction of the population, while if λ < λ*

it should be constrained to a finite fraction of nodes. We observe
that q(1) seems to be a reasonable approximation as its precision
increases with α. On the other hand, λ* might be a reasonable
approximation only for small enough α. These solutions suggest
that the process can not be reduced to a first-order approxima-
tion, and frustrated trials to get to the absorbing state are

expected and should be accounted for. Here, a frustrated trial is
defined as the scenario in which the system needs one event to be
forced into the absorbing state, but a spreading event takes place
instead, thus avoiding the absorbing state. A crucial difference
between q(1) and the mean-field approaches that fail to predict a
phase transition is that q(1) takes into account that the rate at
which a spreader turns into a stifler increases with the number of
spreader neighbors.

Typically, heterogeneity plays a major role on dynamical
processes. To understand its effects in the phase transition, we
analyzed the critical properties of uncorrelated random networks
with a power-law degree distribution, P(k) ~ k−γ, generated by the
algorithm proposed by Catanzaro et al.46, named uncorrelated
configuration model. We remark that, here, the degree correlations
can be measure by means of the conditional probability Pðk0jkÞ that
a node with degree k is connected with a vertex with degree k0. For
uncorrelated networks, this probability can be estimated as the
probability that any edge points to a vertex with degree k0, leading
to Puncðk0jkÞ ¼ k0Pðk0Þ=hkik: These networks are important from a
numerical point of view because it is possible to test the behavior of
dynamical systems whose theoretical solution is obtained only in
the absence of correlations. Using the quasi-stationary method (see
section “Monte Carlo simulations”), we estimated the critical point
and focused our analysis on its behavior as a function of the
network size. These results are summarized in Fig. 5 (please see
the Supplementary Information, Sec. I, for the individual suscept-
ibility curves and critical point estimations). Importantly, we
observe that in power-law networks the threshold seems to vanish
for γ < 3.0, and converges to a non-null value for γ > 3.0. This
behavior is at odds with the behavior of the SIS model, in which the
power-law networks have a vanishing critical point for any value of
γ18,47,48. Conversely, it is similar to the SIRS (Susceptible-Infected-
Recovered-Susceptible) model49, contact process50, the generalized
SIS model with weighted infection rates51, and also modified
versions of the SIS model32. In all of these models, the phase
transition can be associated with a collective phenomenon that
involves the activation of the whole network, whereas the phase
transition in the standard SIS model shows an unusual behavior
related to mutual reinfection of hubs43,52–54.

Fig. 4 Comparison between analytical and Monte Carlo critical point
estimations (λc). Results for random regular networks with 〈k〉k= 10 and
δ= 1 and N= 106. The continuous line expresses the value of λc obtained as
a solution of q(1)= 1, from Eq. (5). In contrast, the dashed line represents
the naive approximation that accounts only for the probability that the next
event is spreading or stifling. In the inset we present the comparison for the
low α regime.
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Modified rumor model: Subcritical behavior. Another impor-
tant result regards the subcritical regime, where the rumor can
last for a “very long” time in the small λ regime. To the best of our
knowledge, this behavior remained unexplored until now. We
briefly mentioned this phenomenon in the analysis of Fig. 3 for
the MT model. For our modified model, these behaviors can be
observed in Fig. 6, which shows the lifespan τf as a function of the
spreading rate λ for an uncorrelated power-law network with
P(k) ~ k−γ with γ= 2.25 and N= 106. In the main figure, we
show the subcritical regime, whose lifespan follows τf ~ λ−η, while
in the inset, we show the peak for τf, which suggests a continuous
phase transition. To calculate the lifespan we used the method
proposed by Boguñá and collaborators43 (for more, see sec-
tion “The lifespan method”).

Complementarily, Fig. 7 shows the temporal behavior of the
density of spreaders ρ, where we can see that the time to reach the

absorbing state is larger for λ= 0.0001 than for λ= 0.01, at odds
with exponential decay. Phenomenologically, the transition from
the spreader to the stifler depends on at least two individuals who
are not ignorant. In the λ≪ δ regime, the forgetting mechanism
reduces the number of stiflers faster than the creation of new
spreaders, thus increasing the number of necessary events to
reach the absorbing state.

The subcritical regime can be characterized in terms of the
time to reach the absorbing state, Tabs. We remark that τ in Eq.
(3) should converge to Tabs. This quantity can be approximated
under the assumption that there is a single spreader and the
population is locally tree-like, where nodes have 〈k〉k neighbors.
In this case, assuming that node i is a spreader, the shortest
sequence of events that will drive the process to the absorbing
state consists of: (1) node i spreads the information to node j, (2)
either i or j turn into stifler, (3) the other node turns into a stifler,
(4) either i or j turn into ignorant, and (5) the other node turns
into an ignorant. Since our process is a continuous Markov chain,
only one event occurs at a time, the respective probabilities P and
expected times 〈τ〉 of these events are

P1 ¼ 1 τ1
� � ¼ 1

hkikλ
ð6Þ

P2 ¼
2α

2αþ 2λðhkik � 1Þ τ2
� � ¼ 1

2αþ 2λðhkik � 1Þ ð7Þ

P3 ¼
α

αþ λðhkik � 1Þ þ δ
τ3
� � ¼ 1

αþ λðhkik � 1Þ ð8Þ

P4 ¼ P5 ¼ 1 2 τ4
� � ¼ τ5

� � ¼ 1
δ
: ð9Þ

Therefore, the probability and the expected time for reaching
the absorbing state through this chain are

Pabs ¼
α2

ðαþ ðhkik � 1ÞλÞðαþ δ þ ðhkik � 1ÞλÞ ð10Þ

hτ1!5i ¼
1

hkikλ
þ 3

2δ
þ 3

2αþ 2λðhkik � 1Þ : ð11Þ

From these quantities, we can approximate the average time
necessary to reach the absorbing state, Tabs

� �
. In the λ≪ δ and

λ≪ α regime, τ1
� �� τ‘

� �
, for ℓ= 2, 3, 4, 5. Thus, the time spent

Fig. 5 Critical point estimations of uncorrelated power-law networks.
We plot λc as a function of N and for different values of γ and α, considering
δ= 1.

Fig. 6 Lifespan as a function of the spreading rate λ. Results for δ= 1,
α= 0.5 on an uncorrelated power-law network with P(k) ~ k−γ with
γ= 2.25, N= 106. In the main panel, we show a wide range of λ,
emphasizing the sub-critical behavior, while in the inset we show the peak
that suggests a continuous phase transition. The blue curve (dot dashed
line) follows τf ~ λ−1 and the orange curve (dashed line) follows τf ~ λ−0.88,
obtained from a fitting of the lifespan obtained using Monte Carlo
simulations (the gray curve).

Fig. 7 Temporal behavior of the density of spreaders for an uncorrelated
power-law network. Result for a network with N= 106, γ= 2.25, α= 0.5
and δ= 1 in the regime λ≪ δ for values of λ near the critical point
λc≈ 0.015.
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in the frustrated trials can be approximated by τ1
� �

. Here, we call
as frustrated trials any sub-chain of events that does not lead to
the absorbing state. So, Tabs

� �
can be approximated by counting

the number of times the process fails to reach the absorbing state
plus the time it succeed, which is given by

T ¼ ∑
1

i¼1
i τ1
� �

1� Pabs

	 
i þ Pabs τ1!5

� � � Tabs

� �
; ð12Þ

which solves as

T ¼ ðαþðhkik�1ÞλÞðαþδþðhkik�1ÞλÞ ðhkik�1Þλð2αþδÞþαδþðhkik�1Þ2λ2ð Þ
α4hkikλ

þ
α2 1

αþδþðhkik�1Þλþ 1
2αþ2ðhkik�1Þλþ 3

2δþ 1
hkikλ

� �
ðαþðhkik�1ÞλÞðαþδþðhkik�1ÞλÞ ;

ð13Þ

and for the regime λ≪ 1 and λ≪ α, δ, follows

T� ¼ ðαþ δÞδ
hkikα2

þ α

hkikðαþ δÞ

� �
λ�1: ð14Þ

Note that Eq. (13) is not defined for the standard MT model,
i.e., δ= 0. In the regime λ≪ α, we expect that T ~ λ−1 and only
two nodes learn the rumor. It is noteworthy that, in the subcritical
regime, the time to reach the absorbing state is dominated by the
time the system has to wait before a spreading event happens. In
order to reach the absorbing state, whenever we have a single
spreader, it first needs to inform a neighbor and, only then, the
process will be allowed to reach the absorbing state. Notice that,
after the spreading event, the stifling events are much faster than
the spreading ones. As the spreading events are the slowest ones
in the subcritical regime, the rate of these processes dominates
Eq. (13), as shown in Eq. (14). Also, frustrated trials to reach the
absorbing state are possible. However, in this case, we are only
repeating the above-described process. Figure 8 shows T and T*

as a function of λ, where the subcritical behavior is dominated by
the time spent on the spreading events. Although our assump-
tions do not cover heterogeneous networks, T has a similar
behavior as the one observed in Fig. 6 for a power-law network,
suggesting that our assumptions are reasonable and might be
applicable in different substrates.

Note that in our modified model, δ > 0, the rumor might still
wander around in the network before die-out. For every
frustrated attempt to reach the absorbing state, the spreader

individual might be a different one. In this way, although the
rumor is fated to disappear, during the transient period, many
different individuals might be informed about the rumor before it
dies out. This effect is a consequence of the “reluctance to tell
stale news” (the annihilation by contact) with the forgetting
mechanism. The first mechanism imposes that at least two
spreaders are necessary to reach the absorbing state, while the
second mechanism enforces a single absorbing state.

Modified rumor model: Asymptotic analysis. From the analy-
tical viewpoint, the analysis of arbitrary networks is much more
difficult, and even the proof of the existence of a critical point is
very hard or maybe impossible in a first-order approximation.
This argument might be of interest to our community as it points
to interesting future directions. In a first-order approximation we
assume that the probabilities are independent. Denoting Xi

� �
,

Yi

� �
and Zi

� �
by xi, yi, and zi, respectively, we have

dxi
dt ¼ δzi � λ∑N

k¼1 Akixiyk
dyi
dt ¼ λ∑N

k¼1 Akixiyk � α∑N
k¼1 Akiyi yk þ zk

	 

dzi
dt ¼ �δzi þ α∑N

k¼1 Akiyi yk þ zk
	 


:

8>><
>>: ð15Þ

Here we follow an asymptotic analysis, considering that
yi ¼ yð1Þi ϵc þ Oðϵ2cÞ, zi ¼ zð1Þi ϵk þ Oðϵ2kÞ and xi∈O(1), where
ϵ≪ 1. Moreover, we have to consider a scaling of the parameters
as λ ¼ ~λϵm and α ¼ ~αϵn to be able to balance the equations. Thus,
from Eq. (15) in the steady-state and neglecting the higher-order
terms, we have

δzð1Þi ϵk ¼ ~λϵm ∑N
k¼1 Akix

ð1Þ
i yð1Þk ϵc

δzð1Þi ϵk ¼ ~αϵn ∑N
k¼1 Akiy

ð1Þ
i ϵc yð1Þk ϵc þ zð1Þk ϵk

� �
:

8<
: ð16Þ

This relation imposes that k ¼ nþ cþminðc; kÞ and k=m+
c, establishing three different possible regimes: (i) 0 < c < k, where
c=m− n and k= 2m− n, (ii) c= k, where m= 0 and n=−k,
and (iii) 0 < k < c, where c=−n and k=m− n. Without loss of
generality, we also assume δ= 1. In the first regime, we have that
yð1Þi ¼ ~λ

~α and hence yi � λ
α. For the second and third regimes we

have to assume a regular network (i.e., all nodes have the same
degree) to obtain a closed-form solution, resulting in yi �

λ
α λΛmaxþ1ð Þ for the second, and yi � 1

αΛmax
for the third regime,

where Λmax is the leading eigenvalue of the adjacency matrix.
We remark that Λmax ¼ k in regular networks. For the details and
derivations of this analysis, see the “Methods” section. A similar
asymptotic analysis was made for the SIRS model in the Supple-
mentary Information, Sec. II, for the sake of comparison.

Note that, we can go from one regime to another by controlling
the parameters λ and α. However, regardless of the regimes, yi is
always positive and larger than zero for any positive non-null
rates in the three possible regimes, thus implying that the phase
transition is not captured in the first-order approximation.
Nonetheless, the transition was observed in our numerical
experiments. Thus, we can conclude that the assumptions on
the first-order mean-field approach are not enough to capture the
essence of rumor models and correlations should be included.

Discussion
We studied both the standard MT model and a modified version
with an additional transition from stifler to ignorant. This simple
modification completely changes the thermodynamic behavior of
the model. In the MT model, we have infinitely many absorbing
states, while in our modified version, we have a single absorbing
state (the exception is δ= 0, in which we recover the MT model).

Fig. 8 Approximations T and T* for the time to reach the absorbing state
as a function of λ. Results for δ= 1.0 and α= 0.5. The orange curve is the
result of Monte Carlo simulations in a random regular network with the
same parameters, 〈k〉k= 10 and N= 105.
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First, we show that the MT model has a phase transition in its
dynamic behavior as a function of the spreading rate. In other
words, for a one seed initial condition and controlling only the
spreading parameter λ, there are two scaling regimes, one where
the fraction of stiflers goes to zero in the thermodynamic limit
and a regime where it scales with the population size. This con-
tradicts the commonly accepted result that such a transition is
absent in the MT model, which was based on the behavior of
first-order mean-field approximations. In our modified model
with δ > 0, we have a single absorbing state, and the transition can
be found between the rumor-free state and an active state. We
provided an expression for locally-tree-like homogeneous net-
works that allow us to estimate the critical point, covering both
the MT and modified models. Crucially, the tree-based
(branching process) approximation, Eq. (4), explicitly accounts
for local feedback effects that are ignored by the first-order mean-
field approximations that fail to capture the transition. The key
feature we capture in this approximation is that spreading events
introduce a feedback loop, as they increase the probability that
the initial spreading node is stifled. In the mean-field calculation,
this effect is averaged out, which leads to underestimating the
local rate of stifling. We characterized the phase transition both in
random regular and power-law networks, showing that for γ < 3.0
the critical point seems to vanish in the thermodynamic limit,
while for γ ≥ 3 it converges to a non-null value. These findings
seem to be robust against variations in α. However, for fixed
network size, as we increase α, the critical point also increases.
More interestingly, we observed a particular subcritical regime,
whose lifespan follows τ−η in the λ≪ δ regime, which we studied
both analytically and numerically. Phenomenologically, the
annihilation mechanism depends on the contacts and, if λ is very
small, the rumor needs a very long time to reach an absorbing
state. Note that, if δ > 0, the rumor might still wander around in
the network before die-out. From a practical viewpoint, this
means that, in order to contain the rumor spreading, people need
to be aware of it. As our results might impact more than 50 years
of research, we hope that our findings will motivate further
research to better characterize the subcritical regime and phase
transition in arbitrary networks analytically, including an accu-
rate analysis of the universality class of such models, and
experiments that might validate the peculiar dynamics of rumor
spreading implied by our findings in real-world systems. We
identified two main future research lines that might give an
additional understanding of rumor dynamics. First, we believe an
in-depth analysis of the universality class of rumor models, as
well as understanding its relationship with dynamical
percolation55, might provide some additional mechanistic
explanations for the observed phase transition. Second, we believe
that the Geometric Singular Perturbation Theory, as applied for
the SIRS56, might provide additional analytical insights, especially
in the lower λ regime.

Methods
Monte Carlo simulations. In this section, we will focus on the computational
viewpoint to model the rumor process described in the main text. Denoting by Ny

the number of spreaders, My the number of edges emanating from spreaders, and
Nz the number of stiflers. We implemented our model as follows. At each step, with
probability δNz/[δNz+ (λ+ α)My] one stifler, chosen at random, forgets the rumor
and becomes an ignorant again. With probability (λ+ α)My/[δNz+ (λ+ α)My]
one contact is made. Algorithmically, this contact is implemented in two steps: (i)
A spreader vertex i is selected with probability proportional to its degree, next (ii) a
nearest neighbor of i, here denoted as j, is selected uniformly. If j is an ignorant,
with probability λ/(λ+ α), j learns the rumor and becomes a spreader. If j is
another spreader or a stifler, with probability α/(λ+ α) it becomes a stifler. If none
of these conditions are satisfied, nothing happens. Next, time is incremented by
dt= 1/[δNz+ (λ+ α)My]. With this scheme, we have two different algorithms, one
for δ > 0, where we have a single absorbing state (rumor-free), and another for

δ= 0, where we have a strong dependency on the initial condition and many
absorbing states.

For the δ > 0 case, the simulations were performed using the quasi-stationary
method42, which is one of the most robust approaches to overcome the stationary
simulations’ difficulties of finite systems with absorbing states. In this method, the
quasi-stationary probability, named �Pn , is defined as the probability that the system
has n spreader vertices in the quasi-stationary regime. Every time the process tries
to visit an absorbing state in the quasi-stationary simulation, this state is
substituted by an active configuration previously visited during the simulation.
These active configurations are stored in a list, which is constantly updated and
works as a new initial condition. This approach is completely equivalent to the
standard quasi-stationary method where averages are performed only over samples
that did not visit the absorbing state57. The density of spreader nodes is derived
from �Pn as ρY ¼ 1

N ∑n
�Pn

42. The lifespan is also related with the quasi-stationary
density as τ ¼ 1=�P1

42. However, we used the method of ref. 43 to obtain a more
robust estimate (see section “The lifespan method”). In our experiments, we let the
simulations run during a relaxation time tr= 107 time steps and, after the
relaxation period, we computed the averages �Pn over tav= 107 time units. The
critical point can be estimated using the modified susceptibility58,

χ ¼ n2
� �� nh i2

nh i ¼ N
ðρY Þ2
� �� ρY

� �2
ρY
� �

 !
; ð17Þ

where n is the number of spreaders, and ρY is the quasi-stationary density. As
argued in18,58,59, the susceptibility presents a peak at the phase transition in finite
systems. The parameters corresponding to the maximum value of the susceptibility
will coincide with the critical threshold for sufficiently large systems.

For the δ= 0 case, the algorithm consists of running the simulation, beginning
with a single randomly placed seed and calculating the final fraction of stiflers. To
have a better estimation, we run in the range of 500 up to 5 × 105 independent
simulations, guaranteeing that χ does not vary more than 10−3 if compared with
the result before the last batch of 500 simulations. We highlight that, although in
this case, we are not interested in the susceptibility, as it depends on the second
moment of the distribution of stiflers, this will guarantee a reasonable sampling for
the first moment and its peak was also a reasonable indicator of the transition as
well. We also remark that, in our experiments, the susceptibility peak coincides
with the lifespan peak calculated using the method proposed in ref. 43.

The lifespan method. The lifespan method, proposed by Boguñá et al.43 can be
used to study critical properties of generic absorbing-state phase transitions. In this
method, the spreading simulation starting from a single seed. Each realization is
characterized by its coverage C—the fraction of different vertices which have been a
spreader at least once during the simulation—and its lifespan τ.

In the thermodynamic limit, there are two possibilities: realizations can be
considered finite or infinite, depending on whether they are below or above the
critical point. Endemic realizations are characterized by an infinite lifespan and a
network-wide coverage, while finite realizations have a finite lifespan and a
coverage vanishingly small in the limit of diverging size.

However, in finite systems any realization can reach the absorbing state sooner
or later due to dynamical fluctuations. Thus, we assume that a realization is active
whenever its coverage reaches a predefined threshold value Ct. The method is
robust with respect to the coverage threshold Ct

44, which can be considered, for
example, equal to Ct= 50% of the network size. Realizations ending before value
C= Ct is reached are considered to be finite.

The role of the order parameter is played by the probability Prob(ρY ≥ Ct, λ, N)
that a realization is long-term, it means, the probability that a run reaches the
predefined coverage Ct (i.e., it is effectively endemic), while the role of
susceptibility is played by the average lifespan of finite realizations, τf. For λ close to
but below the critical point, all realizations usually have a finite and very short
lifespan τ. As λ grows the average duration of finite realizations increases, diverging
at λc. However, for λ > λc, the realizations that remain finite have necessarily a short
lifespan since the probability of samples reaching the active phase increases. So, in
this range, τf also decreases as λ increases. Thus, τf exhibits a peak depending on N
and converging to λc in the thermodynamic limit.

Asymptotic analysis. Equation 15 in the main text is the first-order approxima-
tion of our rumor model. As the annihilation mechanism always depends on
second-order terms, in Eq. (15) by the products yiyk and yizk, simply neglecting
higher-order terms will always exclude the stifling processes (the ones associated
with α). In practice, this limitation can be overcome by considering that the scaling
of the parameters will be related with the scaling of the nodal probabilities. This
approach will allow us to understand the behavior of our model. From Eq. (15) and
considering that yi ¼ yð1Þi ϵc þ Oðϵ2cÞ, zi ¼ zð1Þi ϵk þ Oðϵ2kÞ and xi∈O(1), where
ϵ≪ 1. Moreover, consider the scaling of the parameters as λ ¼ ~λϵm and α ¼ ~αϵn to
be able to balance the equations. Thus, from Eq. (15) in the steady-state and
neglecting the higher-order terms, we arrive at Eq. (16). Without loss of generality,
we also assume δ= 1. Thus, the relations in Eq. (16) impose that k ¼ nþ cþ
minðc; kÞ and k=m+ c, which establish three different possible regimes: (i)
0 < c < k, where c=m− n and k= 2m− n, (ii) c= k, where m= 0 and n=−k, and
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(iii) 0 < k < c, where c=−n and k=m− n. In the following, we evaluate each case
individually.

In the first regime, 0 < c < k, we have that

zð1Þi ¼ ~λ∑jAijy
ð1Þ
j ð18Þ

zð1Þi ¼ ~α∑jAijy
ð1Þ
i yð1Þj : ð19Þ

Defining y ¼ yð1Þ1 ; yð1Þ2 ; ¼ ; yð1ÞN

h iT
and plugging Eq. (18) into Eq. (19) we have

~λAy ¼ ~αy � ðAyÞ; ð20Þ
where “∘” denotes the Hadamard (i.e., element-wise) product. Consequently, this
relation yields

yð1Þi ¼
~λ

~α
: ð21Þ

Substituting the scaling relations, this is equivalent to

yi ¼
λ

α
ϵn�mþc þ Oðϵ2cÞ ¼ λ

α
þ Oðϵ2cÞ; ð22Þ

which shows that in this regime, at leading order, the probability of each node
being a spreader depends only on λ and α. Moreover, for positive values of λ and α,
yi will be positive and does not depend on the network.

Next, for the second case, considering only the dominating terms of Eq. (16) in
the regime c= k, we have

zð1Þi ¼ ~λ∑jAijy
ð1Þ
j ; ð23Þ

zð1Þi ¼ ~α∑jAijy
ð1Þ
i yð1Þj þ zð1Þj

� �
: ð24Þ

Similar to the previous derivation, plugging Eq. (23) into Eq. (24), we obtain

~λAy ¼ ~αy � ðAy þ ~λA2yÞ: ð25Þ
We do not have a closed-form solution for Eq. (25) for general networks.

However, if we assume that A represents a regular network and y is a constant
vector, we have Ay ¼ Λmaxy, where Λmax is the leading eigenvalue of A. Hence,

~λΛmaxy
ð1Þ
i ¼ ~αyð1Þi ðΛmax þ ~λΛ2

maxÞyð1Þi ; ð26Þ
which yields

yð1Þi ¼
~λ

~α ~λΛmax þ 1
� � ð27Þ

and

zð1Þi ¼
~λ
2
Λmax

~α ~λΛmax þ 1
� � : ð28Þ

Substituting the scaling relations as before, we obtain

yi ¼
λ

αðλΛmax þ 1Þ þ Oðϵ2cÞ; ð29Þ

zi ¼
λ2Λmax

αðλΛmax þ 1Þ þ Oðϵ2cÞ: ð30Þ

As in the previous regime, yi > 0 for positive values of λ and α. Note that in the
regime c= k there is a dependency on the network structure, here codified in the
leading eigenvalue. However, such a dependency does not define a critical point.

Finally, considering the third regime, 0 < k < c, we consider the dominating
terms of Eq. (16) for the regime 0 < k < c. Thus, we have

zð1Þi ¼ ~λ∑jAijy
ð1Þ
j ; ð31Þ

zð1Þi ¼ ~α∑jAijy
ð1Þ
i zð1Þj : ð32Þ

Following the same approach as before, we have

~λAy ¼ ~αy � ðA2yÞ: ð33Þ
Next, assuming that A represents a regular network and using the same

argument as in the previous section, we have

yi ¼
1

αΛmax
þ Oðϵ2cÞ: ð34Þ

Again we observe that yi > 0. However, in this regime, this condition depends only
on α and the network structure through Λmax.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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