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Percolation theory has been widely used to study phase transi-
tions in network systems. It has also successfully explained various
macroscopic spreading phenomena across different fields. Yet, the
theoretical frameworks have been focusing on direct interactions
among nodes, while recent empirical observations have shown
that indirect interactions are common in many network systems
like social and ecological networks, among others. By investigat-
ing the detailed mechanism of both direct and indirect influence
on scientific collaboration networks, here we show that indirect
influence can play the dominant role in behavioral influence. To
address the lack of theoretical understanding of such indirect
influence on the macroscopic behavior of the system, we propose
a percolation mechanism of indirect interactions called induced
percolation. Surprisingly, our model exhibits a unique anisotropy
property. Specifically, directed networks show first-order abrupt
transitions as opposed to the second-order continuous transition
in the same network structure but with undirected links. A mix
of directed and undirected links leads to rich hybrid phase transi-
tions. Furthermore, a unique feature of the nonmonotonic pattern
is observed in network connectivities near the critical point. We
also present an analytical framework to characterize the proposed
induced percolation, paving the way to further understanding
network dynamics with indirect interactions.

percolation | indirect interactions | social network | phase transition |
behavioral contagion

Percolation theory (1) is one of the most prominent frame-
works within statistical physics. Initially developed (2, 3)

to explain the chemical formation of large macromolecules, it
has been recently used to study various dynamical processes
in complex networks (4–9). Examples include the use of bond
percolation (9, 10) to study the wide spread of rumors over online
social media and outbreaks of infectious diseases on structured
populations. Site percolation (4, 5, 11) has been employed to
study the cascading failures of infrastructure networks (6, 12–16)
and the resilience of protein–protein interaction networks (17).
Likewise, bootstrap percolation (18), k-core (19–21), and linear
threshold percolation (7, 22–24) have enabled the study of the
spreading of behaviors over social networks. Finally, the so-called
explosive percolation (25) has allowed a better characterization
of systems’ structural transitions when they are growing or can
adapt, whereas core percolation (26, 27) has contributed signif-
icantly to insights into nondeterministic polynomial problems.
Common to all these percolation models is that they have suc-
cessfully described various important dynamical phenomena by
considering different direct interactions (8, 9, 28) among network
nodes; in particular, they have captured the behavior of network
systems as given by phase transitions (4, 8, 9, 28, 29).

Our study is motivated by recent evidence that there are many
systems in which indirect interactions play a major role in their
spreading dynamics (30–35). Such underlying indirect interac-
tions have important implications not only on the dynamics of the
system but also on the evolution and the emergence of network
structures. For example, Christakis and Fowler (30, 31) found
that for the spreading of many social behaviors, such as drug
(36) and alcohol addictions (37) and obesity (30), an individual
can span their influence to their friends around three degrees of
separation (friend of a friend’s friend). This phenomenon is also
widely known as “three degrees of influence” in social science.
In ecological networks, Guimarães et al. (32, 33) discovered in
2017 that indirect effects contribute strongly to the trait coevo-
lution among reciprocal species, which can alter environmental
selection and promote the evolution of species.

Despite the ubiquity of indirect influence in various real-world
systems, few studies have examined the exact mechanisms by
which the indirect influences occur, or the relative strengths
between direct and indirect influences. Here, based on empirical
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Table 1. Description of bibliographic datasets used in the empirical studies

Established field Emerging field No. of. No. of Constructing Field Observation
(PACS) (PACS) authors edges network period emerging period period

Chaos Complex networks 1, 833 3, 128 1999–2003 2001–2003 2004–2006
(05.45) (89.75)

Phase transitions Complex networks 1, 265 2, 864
(64.60) (89.75)

EPLDS (73.20) OPLDS (78.67) 2, 069 5, 900
Carbon nanotubes (39). Graphene (39). 20, 011 110, 041 2009–2013 2011–2013 2014–2016

The first and second columns are names and Physics and Astronomy Classification Scheme (PACS) numbers (except carbon nanotubes and graphene) for
the four pairs of research fields. The third to fifth columns are the number of authors and edges and the period used to construct collaboration networks,
respectively. The sixth column is the period during which a new field emerges and “focused” scientists are specified. The seventh column is the period to
observe scientists’ behavioral change and to calculate the indicator Qi .

analyses of scientific collaboration networks, we reveal that in-
direct influence occurs through next-nearest neighbors and can
be the dominant mechanism through which research interests
change; on the contrary, evidence of direct (nearest) influence
is relatively weak.

However, on the theoretical front, up to now there has been no
percolation-based theoretical model to describe the underlying
mechanism of indirect influence or its distinctions with existing
percolation models in terms of the macroscopic behaviors. For
either regular networks or complex networks, various percolation
models like bond, site, bootstrap, k-core, linear threshold and
core, etc., are always based on direct interactions (8, 9, 28) among
nodes. In essence, all of these models only take into account the
existence and the strength of directly connected nodes, regardless
of any indirect influences of other nodes. Hence, they are not
suitable for describing the indirect mechanism. Here, we propose
a percolation framework called induced percolation to theoreti-
cally study the impact of such an indirect mechanism on the whole
system.

Our results show that indirect interactions lead to a unique
macroscopic behavior characterized by anisotropy and phase
transitions and different spreading outcomes compared to the
direct influence mechanisms. Specifically, we study the most
general scenario in which links can have directions and report
that varying the links’ directionality could change the order of the
phase transition. This is in sharp contrast to previous percolation
models, for which the nature of the phase transitions is not
affected by the directionality of links. Such rich phase transition
behavior is further illustrated in our simulations on empirical
networks. To the best of our knowledge, the phenomenon of
directionality-related order of the phase transitions only exists in
some special cases of core percolation (27), whereas it is shown
to be a generic feature in our indirect interaction model.

Results
Empirical Indirect Influence Mechanisms. To investigate the exact
mechanism of neighboring influence and its direct/indirect na-
ture in empirical networks, we study collaboration networks of
scientists. Here the “behavior” is meant as the research field(s)
of a scientist, and the “spreading of behavior” is defined as the
propensity of the scientist to stay in his/her established field or
shift to an emerging field. We then study how scientists’ research
fields are influenced by their direct (nearest) neighbors and
indirect (next-nearest) neighbors. We choose four pairs of fields
in physics that have large numbers of scientists involved: chaos
vs. complex networks, phase transitions vs. complex networks,
electrical properties of low-dimensional structures vs. optical
properties of low-dimensional structures (hereinafter referred to
as EPLDS vs. OPLDS), and carbon nanotubes vs. graphene. For
each pair of fields, the latter field is the emerging field (new field)
that attracts scientists from the former (old, already established)
field.

Specifically, we analyze the datasets of articles published
by the American Physical Society (APS) (38) and Web of
Science (39), considered as representative data sources for
the studied fields (we share all the data of this study at
https://github.com/Jia-Rong-Xie). Based on articles in each
pair of fields, covering in total 5 y around the emergence of a
new field (see Table 1 and SI Appendix, Fig. S1), we construct
a collaboration network. The nodes are the scientists, and a
link is established between any pair of scientists who have
at least one joint publication. Scientists who have published
multiple articles (at least two in APS and five in Web of Science
dataset; refer to extended discussion for parameter robustness in
SI Appendix, Figs. S7–S13) in the old field yet have not published
any articles in the new field are defined as focused scientists
in the old field. They are assumed to be the influencers in the
networks and labeled as state 1. For any other nodes (influenced)
in the networks, we calculate the number of direct and indirect
“influencers” for each node. The number of direct influencers of
node i is simply the number of its nearest neighbors with state
1, and we denote it as k̃i . For the number of indirect influencers
of node i, we first identify its state 1 neighbors. For each of the
direct influencers (direct state 1 neighbors), we then count the
number of their own state 1 neighbors, and the maximum count
is defined as the number of indirect influencers mi (also called
induced index). On each of the direct influencers of node i, we
further count its degree and define the maximum degree of them
as degree index di . A visual illustration of the definitions is shown
in Fig. 1A.

Within the next 3 y (see Table 1 and SI Appendix, Fig. S1), we
count each influenced i’s publications and calculate the propor-
tion Qi of articles in the old field by the following expression:

Qi =
Pold

i

Pi
, [1]

where Pold
i and Pi represent the number of papers in the old

field and the total number of papers published by scientist i
during the observation period, respectively. A higher Qi value
of the influenced i then indicates that it receives more influence
by the “influencers” with state 1, either directly or indirectly.
Our results in Fig. 1 B, C, and E (and SI Appendix, Figs. S4–S6)
clearly show that Qi increases with the indirect influence index
mi , yet not so much with direct influence index k̃i (also called
k-core index; see Fig. 1 C and D) or the degree index di (see
Fig. 1 E and F) and the second-nearest degree index κi (see
SI Appendix, Fig. S6). This indicates that rather than direct in-
fluence, indirect influence plays a dominant role in the choice
of research focus among scientists. Indeed, we find that nodes
i and h, via node j (see Fig. 1A), are more likely to coauthor
publications in the old field, which means that the quantitative
correlation between Qi and mi does mediate the collaboration
relationship (see SI Appendix, Fig. S14).

2 of 10 PNAS
https://doi.org/10.1073/pnas.2100151119

Xie et al.
Indirect influence in social networks as an induced percolation phenomenon

D
ow

nl
oa

de
d 

at
 S

un
 Y

at
-S

en
 U

ni
ve

rs
ity

 o
n 

F
eb

ru
ar

y 
25

, 2
02

2 

https://github.com/Jia-Rong-Xie
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://doi.org/10.1073/pnas.2100151119


A
PP

LI
ED

M
AT

H
EM

AT
IC

S

A

B

C

E

D

F

Fig. 1. Indirect influence mechanism in empirical collaboration networks. (A) Schematic representation for the induced index mi , the k-core index k̃i , and
the degree index di . In this example, “focused” scientists in the established field are denoted as state 1. Node i has an induced index mi = 3 because among
all direct neighbors in state 1, node j has the maximum neighbors in state 1 (i.e., three excluding node i). The degree index of node i is di = 6, which is
the degree of node j. The k-core index of node i is k̃i = 2, which is the number of direct neighbors in state 1 (nodes l and j). (B) Empirical evidence of
indirect influence. It shows a clear indirect influence mechanism in four pairs of established and emerging fields in physics that have large numbers of
scientists involved. The proportion Qi of publications in the established fields significantly increases with the scientists’ induced index mi in all the datasets.
To compare with direct influence, the orange lines in C show that the value of Qi is hardly affected by the direct influence measured through the k-core
index, while the scientists with higher indirect influence index (top 50% of mi values) clearly have a higher Qi value than that of the lower indirect influence
(bottom 50% of mi values), indicating a strong indirect influence. D highlights four sample scientists (nodes) labeled as h,i,j,l. Each orange node is a node of
interest, its connected green nodes are the neighbors of state 1, pink nodes are green nodes’ state-1 neighbors used to calculated induced index mi . Higher
induced index nodes h and j (mh = mj = 10) publish a proportion Qh = 0.71 and Qj = 0.78 of old field articles, much higher than that of node i with a lower
induced index (mi = 4), although i’s k-core index is higher (k̃i = 10) than h and the same as j. Comparing node l and i, j again indicates that the influence is
stronger through induced index m than that of k̃. A similar comparison in E and F shows that the proportion Qi is hardly affected by the degree index but
clearly affected by the induced index. C–F show results performed on the collaboration network of carbon nanotubes vs. graphene. Note that in F we also
show the state 0 nodes labeled in blue, since the calculation of degree index considers them.
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Fig. 2. Induced percolation on directed networks. A illustrates the proposed mechanism of induced percolation for the case m = 2. In order for a node i to
remain in state 1, at least one node (j) at the other end of an incoming link should be in state 1. In its turn, j should also have at least m (= 2 in the example)
incoming links from neighbors that are in state 1. B shows a directed graph of eight nodes all in state 1. C shows the GOUT at equilibrium state when the
graph on panel B is pruned according to the induced percolation rules. D and E illustrate the variables x and y defined in the main text by Eqs. 3 and 4. F and
G show the relationship between the order parameters GSCC, GIN, and GOUT for induced percolation and typical bond percolation processes, respectively.
H schematically represents the multilayer representation employed to derive the order parameter P∞ when there are directed and undirected links in the
substrate network.

The observed indirect influence mechanism in empirical col-
laboration networks is possibly due to the following two factors.
First, the fact that a scientist has a high value of induced index
means he/she collaborates with a highly active scientist (a state 1
neighbor on its own connecting to a large amount of state 1 neigh-
bors). This active scientist could strongly influence collaborators.
Second, researchers who collaborate with highly active scientists
have better chances to find new potential collaborators through
their connections with respect to researchers who have no highly
active neighbors. In other words, scientists with high induced
index can interact with researchers of the same field indirectly,
through their highly active neighbors.

Induced Percolation Model. We now define a percolation model
based only on this indirect influence mechanism characterized by
the indirect index mi . As empirically shown before, the indirect
influence increases with mi . Here we present the most simplified
version of this influence mechanism that assumes a deterministic
influence outcome, i.e., a node i is influenced to state 1 with prob-
ability h(mi) = 1 if its indirect induced index mi is not smaller
than a threshold m (see SI Appendix, Fig. S20 for a slightly more
complicated case):

h(mi) =

{
0, mi <m,

1, mi ≥m.
[2]

More formally, induced percolation can be defined on directed
networks as follows. Let us assume that the state of the nodes
is characterized by an integer value, 0 or 1. Initially, we set the
state of all nodes in the network to 1. A node i remains in
state 1 if at least one of its incoming links comes from a node,

say j, with state 1, and in turn the node j has at least m other
incoming links from nodes that are in state 1; see Fig. 2A for
an illustration of the case m = 2. Otherwise, node i changes to
state 0 at the next time step. The influence of the m nodes on the
node i defines the indirect interactions among them. Under this
mechanism, certain nodes will change their states from 1 to 0 at
each time step until no more changes are possible; see Fig. 2 B
and C for an example. Compared with bond, bootstrap, or k-core
percolation, the fundamental difference of induced percolation is
that the current state of a node is affected not only by its nearest
neighbors but also by a number of its next-nearest neighbors. The
mechanism for induced percolation through a network captures
the observation that there are behaviors whose influence reaches
nodes beyond the first shell.

In network percolation theory, the giant strongly connected
component (GSCC), giant in-component (GIN), and giant out-
component (GOUT) are three main order parameters. In partic-
ular, GSCC refers to the largest strongly connected component
whose size is comparable to the entire network. GIN is the
group of nodes from which any node in GSCC can be reached,
while GOUT is the group of nodes that can be reached from
any node in GSCC. For various types of propagation dynamics
on networks, the GOUT corresponds to the largest spreading
coverage, and it serves as an indicator of network connectivity
under a given propagation mechanism. The size of the GOUT
in the empirical studies corresponds to the number of scientists
who stay in the old field. Therefore, in induced percolation, the
main quantity of interest is GOUT (8, 28, 29) and the size of
GOUT is the order parameter, i.e., the macroscopic quantity that
characterizes phase transitions. In addition, we also examine the
size distribution of small outgoing components.
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In undirected networks, each link can be viewed as two di-
rected links with opposite directions. Therefore, induced perco-
lation can be studied on fully directed networks, and then the
methodology can be extended to either undirected (i.e., fully
bidirectional) networks or to networks in which there are both
bidirectional and unidirectional links. Note that the GOUT of
undirected networks is the same as the GIN and the GSCC.
We schematically illustrate the proposed induced percolation
mechanism on directed networks in Fig. 2, where we also show
the order parameter as compared with the one typically used
in bond percolation. Similar diagrams for undirected and mixed
networks can be found in SI Appendix, Figs. S15 and S16.

The phase transition that characterizes the induced percola-
tion process can be analytically studied on random networks. The
class of random directed networks is constructed by indepen-
dently connecting two arbitrary nodes with a directed link with
a fixed probability. The network can be described by the joint
degree distribution P (kin, kout), which is the probability that a
randomly selected node has in-degree kin and out-degree kout. For
random directed networks, the size of GOUT is derived through
the following recursive equations. We first define two recursive
variables x and y (see Fig. 2 D and E): x represents the probability
that when selecting at random a directed link, the node at the
origin of the link is active (in state 1), whereas y represents the
probability that a random link enables its end node to be in an
active state. According to the definitions of x and y, we have

x =

+∞∑
kin,kout

koutP (kin, kout)

〈k〉
[
1− (1− y)kin

]
, [3]

where (1− y)kin is the probability that none of the incoming
kin links can keep node j in state 1 (see Fig. 2 A and D),
while 1− (1− y)kin represents the probability that at least one

of the incoming kin links can keep node j in state 1. The term
koutP(kin,kout)

〈k〉 is the excess incoming degree distribution (28, 29)
for the node at the origin of an arbitrary directed link. This is
because the likelihood of a node’s being the origin of a randomly
chosen directed link is proportional to the node’s out-degree.

Calculating the probability y is a little more involved. The
definition of the induced percolation process implies that even
if the starting node of a directed link is active (which happens
with probability x), it is not guaranteed that the end node of this
directed link remains active (which happens with probability y).
However, if the starting node of this directed link is itself active,
and at the same time at least m neighbors pointing to the starting
node are active, then this directed link can keep its end node
active. Conversely, if a directed link can keep the node it points to
active (corresponding to y), then the starting node of this directed
link must be active (corresponding to x). Therefore, it must hold
x > y when m > 1 (x = y when m = 1 which corresponds to
bond percolation). The above analysis yields the expression of
y as

y =

+∞∑
kin,kout

koutP (kin, kout)

〈k〉
kin∑

s=m

(
kin

s

)
x s(1− x )kin−s

[
1−

(
1− y

x

)s]
, [4]

where
(
kin
s

)
x s(1− x )kin−s gives the probability that for a node

of incoming degree kin, s out of kin neighbors are active. y/x
represents the conditional probability that a directed link keeps
its end node active, given the starting node is active. Therefore,
1− (1− y/x )s is the probability that at least 1 out of the s active
incoming neighbors keeps this node active.
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Fig. 3. Order parameter GOUT for induced percolation on directed and undirected random networks. The symbols represent simulation results and the
curves are corresponding theoretical results. A and B show GOUT for induced percolation (m = 2, . . . , 6) on directed scale-free (SF) and Erdős–Rényi (ER)
networks as a function of the average degree 〈k〉. Results are compared with the behavior of the same order parameter for bond percolation (equivalent
to setting m = 1). C shows the graphical solution of Eq. 4 for induced percolation (m = 2) on directed ER graphs, where kc is the critical average degree at
which a first-order phase transition takes place. D and E show results for undirected networks, whereas the graphical solution shown in F is derived from Eq.
13 (see Methods) for induced percolation (m = 2) on undirected ER graphs. Directed SF networks are generated by the static model (41, 42) with exponents
γin = 2.5 and γout = 3.0 for the incoming and outgoing degree distributions, respectively. Undirected SF networks are generated with the exponent γ = 2.5.
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Fig. 4. Order parameter GOUT for induced percolation on empirical networks based on datasets in Table 1. A–D show GOUT as a function of the proportion
λ of remaining links. Each point of GOUT is computed as the steady state of induced percolation (m = 3) on real-world networks after randomly removing
a fraction of 1 − λ links. The collaboration network is constructed based on published articles within the first 5 y in the four pairs of fields described in
Table 1. The directed part of a citation network is obtained by removing all the bidirectional links from the citation network (see SI Appendix, section 1E).
For the studied four pairs of fields, GOUT in general well agrees with main findings: a continuous, discontinuous, and hybrid phase transition for undirected
collaboration networks (blue diamonds), directed part of citation networks (purple squares), and mixed citation networks (orange circles).

Finally, the order parameter P∞ for the size of GOUT can be
calculated based on Eqs. 3 and 4 as follows:

P∞ =

+∞∑
kin,kout

P (kin, kout) [1− (1− y)kin ]. [5]

Here P∞ is equivalent to the probability that a randomly chosen
node has at least one incoming node to keep it active. One
interesting finding worth highlighting is that the GSCC coincides
with the GIN for the induced percolation process on directed
networks, which is not the case for classical percolation models
(see Fig. 2 F and G). The theoretical analysis of the order
parameter P∞ on undirected networks is illustrated in Methods.
We also note that the analysis of P∞ on mixed networks can
be done by mapping the structure to a multilayer network; see
Fig. 2H and more details in SI Appendix, section 2.

Phase Transitions of Induced Percolation. Theoretical analyses al-
low us to show that the type or order of the phase transition
depends on the directionality of the links for the same network
connectivity pattern, i.e., the phase transition is anisotropic in
nature. On directed networks, when m > 1 (m = 1 is the case
of typical bond percolation), induced percolation shows discon-
tinuous (first-order) phase transitions (see Figs. 3 A–C and 4
A–D for real-world networks). Yet, on undirected networks, the
same percolation process always leads to continuous (second-
order) phase transitions (see Figs. 3 D–F and 4 A–D for real-
world networks). These results are in sharp contrast with previous
percolation models on networks (see Table 2), for which it has
never been found that the directionality of network links fun-
damentally alters the type of phase transitions. This means that
previously studied types of percolation models might have signifi-
cantly underestimated the effects of asymmetry in link directions

on the system’s macroscopic behavior. An important implication
of this observation is that abrupt transitions in complex systems
like ecological and social networks might be way more likely to
occur than previously anticipated by existing percolation models.

The anisotropy induced by the directionality of the links leads
to a rich and complex behavior when the network is composed of
a mixture of directed and undirected links. Specifically, a hybrid
phase transition emerges with the presence of a certain amount of
directed links. Fig. 5 A and B show that by increasing the fraction
p of directed links in the network, the order parameter GOUT
evolves, as the average degree 〈k〉 increases, from a continuous
transition to a hybrid phase transition where both continuous and
discontinuous transition exist, to a first-order transition for larger
values of 〈k〉. In addition, in the region where the hybrid phase
transition is observed, several quantities follow a set of scaling
relations with critical exponents that are in line with Landau’s
mean-field theory.

We label the critical hybrid point where the hybrid transition
first appears as point C (k∗, p∗) in Fig. 5A. We find a set of
scaling relations connecting GOUT to other quantities near C
that are predicted by Landau’s mean-field theory: Within the
hybrid transition, the jump height of GOUT, ΔP∞(p∗ +Δp) :=
lim〈k〉→k+

c
P∞(〈k〉 , p∗ +Δp)− lim〈k〉→k−

c
P∞(〈k〉 , p∗ +Δp),

where kc is the critical point at which the first-order transition
occurs, follows a scaling function of Δp with the critical exponent
η = 1/2 (Fig. 5E):

ΔP∞(p∗ +Δp)∼ (Δp)
1
2 . [6]

The same critical exponent holds for the jump height as a scal-
ing function of 〈k〉 − k∗ as shown in the SI Appendix, section 5.
When fixing p at p∗ and varying 〈k〉 in the vicinity of k∗, the
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Table 2. Comparison of percolation models

Type of phase transition Clusters distribution Hybrid phase transition

Percolation model Undirected Directed near critical point β at critical point

Induced percolation Second First Nonmonotonic 1 (second) 1/2 (first)
θ = 1/3
η = 1/2

Bond percolation (5, 8, 9, 28) Second Second Monotonic 1 —
Site percolation (5, 8, 9, 17, 28) Second Second Monotonic 1 —

Bootstrap percolation (18) Second/first — Monotonic
1 (second)
1/2 (first)

θ = 1/3
η = 1/2

k-core percolation (19) Second/first Second/first —
1 (second)
1/2 (first)

—

Core percolation (26, 27) Second Second/first
—

1 (second)
1/2 (first)

—

Explosive percolation (40, 43, 44) Second — — 0.0555 —

Articulation percolation (45) Second/first — —
1 (second)
1/2 (first)

—

Dashes indicate that no related research has been found.

size deviation of GOUT is quantified by the following scaling
function of 〈k〉 − k∗ with critical exponent θ = 1/3 (Fig. 5F),
reached from both below and above:

|P∞(〈k〉 , p∗)− P∗
∞(k∗, p∗)| ∼ |〈k〉 − k∗|

1
3 . [7]

We note that Baxter et al. also find these two critical exponents
in k-core percolation (20).

Another unexpected feature that distinguishes the percolation
process formulated here from other percolation is the cluster size
distribution near criticality. Typically, for the second-order phase
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Fig. 5. Phase transitions and critical behaviors of induced percolation on mixed networks. In A, we show theoretical and numerical results for GOUT as a
function of the average degree 〈k〉 when the fraction of directed links is varied. The point C denotes the point at which coexistence of second- and first-order
phase transitions occurs for the first time. The curved dotted line represents the value of GOUT before and after the first-order phase transition. The symbols
represent simulation results and the curves are corresponding theoretical results. B shows the values of the critical points in the parameter space made up
by the average degree and the percentage of directed links; the dotted line describes the critical value at which a second-order phase transition occurs,
while the solid line corresponds to the first-order phase transition. Dots correspond to critical points, C. C represents the types of phase transitions that
can be observed in the m − p plane. Blue, purple, and green colors bound the area in which second-order, hybrid, and first-order phase transitions exist,
respectively. The red boundary lines between the blue and the purple areas correspond to the critical points C. When the parameters are such that they lay
on the red line, the behavior of GOUT corresponds to the green line marked with point C in A. D shows the types of phase transitions shown in C but in the
m − 〈k〉 plane. E presents results of the jump size, ΔP∞, as a function of Δp = p − p∗ when the critical point C is approached either from below or from
above. F depicts the change of P∞ near the critical point k∗ as a function of 〈k〉 − k∗, when fixing p = p∗. The mixed network is generated by assigning a
percentage p of directed links to an undirected ER network with an average degree 〈k〉 and consists of 106 nodes.
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Fig. 6. Size distribution, P(s), of small clusters at the critical point of induced percolation (m = 4) on undirected networks. In A we show the size
distribution, P(s), which exhibits a fluctuating behavior especially for small sizes. B plots the same distribution P(s) but as a function of the average degree 〈k〉,
showing an unambiguous nonmonotonic decrease of the size distribution. C and D depict the monotonous power-law decay of the cluster size distribution
in the limit of classical bond percolation. Finally, E displays the cluster size distribution at the critical point kc≈1.65, also showing the structure of each
cluster. Results are averaged over 103 independent realizations of undirected Erdős–Rényi networks (of size 106 nodes). As it can be clearly seen, the critical
behavior of induced percolation is different from that of classical one.

transitions, in the vicinity of the phase transition point, the size
distribution of small connected clusters is in general governed
by the monotonous function of P(s)∼ s−τe−s/s∗ , where s∗

provides a characteristic size of the finite components (4, 10).
The closer to the critical point, the larger s∗ will be. At the exact
phase transition point, s∗ approaches infinity and P(s) exhibits
a monotonic power-law distribution of P(s)∼ s−τ , signifying
a loss of characteristic scale in the distribution. However, for
induced percolation on undirected networks, we find that near
the critical point P(s) exhibits a novel oscillatory-like behavior,
i.e., it is no longer monotonically decreasing with s (see Fig. 6 A
and B).

As it can be seen in the Fig. 6 A, B, and E, the observed
oscillatory-like behavior of P(s) is more pronounced for small
values of s and does not change the asymptotic power law distri-
bution for large s nor the critical exponent of the phase transition,
which is the same as in bond percolation, β = 1, τ = 5/2 (40).
This behavior of P(s) is, however, clearly distinct from the
classical monotonic distribution (see Fig. 6 C and D). We note
that we do not have a clear notion of what the exact impact of
this pattern on the macroscopic behavior of the system is, which
is a question to be further examined in future work.

Conclusion and Discussion
Let us first mention that in addition to our empirical results on
collaboration networks we believe that the induced percolation
mechanism could play a relevant role in other examples of behav-
ioral influence or contagion, such as in the behavioral spreading
of drug abuse, alcoholism, obesity, divorce, happiness, and loneli-
ness, among others. These examples are usually listed to show the
“three degrees of influence” mechanism. That is, one individual’s
influence can significantly spread out to their friends’ friends’

friends. However, the specific spreading mechanisms behind this
phenomenon remain unknown and with no theoretical, first-
principled grounds. Although our empirical work reveals only
one mechanism of influence within two degrees, we believe that
it can be regarded as the first step to provide a specific spread-
ing mechanism for the “three degrees of influence” and poten-
tially opens new paths in the field of percolation on networked
systems.

Based on our empirical discovery that indirect influence can
dominate over direct influence we have proposed an induced
percolation model to characterize the dynamics and outcomes
of this indirect spreading mechanism. We found that such indi-
rect interactions lead to a plethora of percolation transitions in
complex networks that are rooted in the degree of anisotropy
of the connectivity pattern. Specifically, we have shown that the
amount of directed links in a network determines the order
of the phase transition, which spans from a second order in
networks without directed links to a first order when all links are
directed. In between, a rich behavior associated with hybrid phase
transitions emerges with the coexistence of second- and first-
order phase transitions. In addition, the indirect effect makes the
size distribution of small clusters near the phase transition point
exhibit a nonmonotonic pattern, which has not been previously
seen in other percolation models.

Our theoretical framework provides the tools to investigate the
implications of having different indirect influence mechanisms
in a spreading phenomenon and understand their associated
dynamical process and macroscopic spreading outcomes. For
instance, we have found that indirect influence can dominate
over direct influence in social systems like what we found in
scientific collaboration networks—if similar mechanisms in other
social behaviors like drug abuse, alcoholism, etc. also hold, this
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implies very different mitigation policies from that based on
direct influence mechanisms.

Methods
Induced Percolation on Undirected Networks. We elaborate on the defini-
tion and the theoretical derivation of induced percolation on undirected
networks. All nodes in an undirected network are initially set to state 1.
A node l remains in state 1 if at least one of its undirected links has a
node j in state 1, and this node j has at least m neighbors (excluding the
node l) with state 1 (as illustrated in SI Appendix, Fig. S16A for the case
of m = 2); otherwise, node l changes to state 0 at the next time step. To
theoretically analyze the percolating probability that any node belongs to
a GCC (giant connected component, equivalent to GOUT), P∞, we start
by defining six conditional probabilities as intermediate variables, whose
notations are shown collectively in SI Appendix, Fig. S17. Without loss of
generality, we denote a randomly chosen undirected link as {j, l} and
deduce the probability that node l belongs to a GCC.

According to the definition of induced percolation for undirected net-
works, the condition for node l to remain active is that there is at least
one active neighbor j, and the number ũ of active neighbors (except node
l) of node j satisfies ũ ≥ m. We refer to a node in state 1 as an active
node and in state 0 as an inactive node. Unlike active neighbors in directed
networks, the number ũ of active neighbors in undirected networks is closely
related to the degree k of node j. Specifically, if k > m and node j is active,
then node j can keep all its neighbors active. Conversely, if k ≤ m, then
node j cannot keep any of its neighbors active. Hereafter, we employ the
degree k instead of the number of active neighbors ũ to derive percolation
probability.

The conditional probability ṽ is the probability that node j can keep node
l active, given node l can keep j active. As per the definition of induced
percolation, the event of j keeping l active implies that the degree of node
j satisfies k > m. Node j simultaneously keeps all of its neighbors active. The
above analysis yields the following recursive equation:

ṽ =

∞∑
k=m+1

kP(k)

〈k〉
, [8]

where kP(k)
〈k〉 represents the excess degree distribution of the end node of a

randomly chosen link.
On the other hand, the conditional probability ṽ∞ is defined as the

probability that node j can keep node l active, and node l is connected
to the GCC via node j, given that node l can keep j active. Again, as
per the definition of induced percolation, the degree of node j satisfies
k > m. Analogously, node j can keep all its neighbors active. In addition,
the event that node l connects to GCC through node j is equivalent to
the event that node j connects to GCC through at least one of the k − 1
neighbors other than l. The corresponding probability is 1 − (1 − t̃∞ −
ṽ∞)k−1 (as shown in SI Appendix, Fig. S17C), where the probability 1 −
t̃∞ − ṽ∞ accounts for the likelihood that one of the k − 1 neighbors does
not belong to the GCC given that node j can keep it active. Therefore,
the self-consistent equation for the conditional probability ṽ∞ can be
written as

ṽ∞ =

∞∑
k=m+1

kP(k)

〈k〉

[
1 − (1 − t̃∞ − ṽ∞)

k−1
]

. [9]

In the previous definition, we made use of the conditional probability
t̃∞, which is the probability that node j cannot keep node l active while
node l connects to GCC through node j, under the condition that node l
maintains node j in state 1. Thus, it follows that the degree of node j satisfies
k ≤ m and that node j cannot keep any of its neighbors active. Moreover,
the event in which node l connects to the GCC through node j is equivalent
to the event in which node j reaches the GCC through one of the k − 1
neighbors other than l. The corresponding probability reads 1 − (1 − ã∞ −
ỹ∞)k−1 (as shown in SI Appendix, Fig. S17D), where the probabilities ã∞,
ỹ∞ stand for cases in which node j cannot keep any neighbors in state 1
(see below). Therefore, the conditional probability t̃∞ can be calculated
using

t̃∞ =
m∑

k=1

kP(k)

〈k〉

[
1 − (1 − ã∞ − ỹ∞)

k−1
]

. [10]

Once the above probabilities have been defined, we can proceed with
the derivation of the remaining three conditional probabilities, namely, ỹ,
ã∞, and ỹ∞, which are analogous to v, ṽ∞, and t̃∞, but under the condition
that node l cannot keep node j active. The derivation of the probability ỹ is
similar to ṽ, except that node j relies on at least one of the k − 1 neighbors
(except l) to remain active. This probability can be expressed as

ỹ =
∞∑

k=m+1

kP(k)

〈k〉

[
1 − (1 − ṽ)k−1

]
. [11]

The derivation of the conditional probability ã∞ is similar to that of t̃∞,
except that one additional condition is required: of the k − 1 neighbors
different from l, at least one can keep j active and connected to the GCC.
Assuming that there are exactly s (1 ≤ s ≤ k − 1) neighbors that can keep
node j active, the probability is

(k−1
s

)
ỹs(1 − ỹ)k−1−s. The probability that

node j is connected to the GCC through one of the s neighbors is ỹ∞
ỹ .

For the remaining k − 1 − s neighbors that cannot keep node j active, the
probability of j connecting to the GCC through one of them is ã∞

1−ỹ . There-
fore, the probability that node j is not connected to the GCC through any
neighbor is (1 − ỹ∞

ỹ )s(1 − ã∞
1−ỹ )

k−1−s, as shown in SI Appendix, Fig. S17F.
Therefore, the self-consistent equation to derive the conditional probability
ã∞ is

ã∞ =

m∑
k=1

kP(k)

〈k〉

k−1∑
s=1

(k − 1

s

)
ỹs
(1 − ỹ)k−1−s

×
[
1 − (1 −

ỹ∞
ỹ

)
s
(1 −

ã∞

1 − ỹ
)

k−1−s
]

=
m∑

k=1

kP(k)

〈k〉

[
1 − (1 − ỹ)k−1 − (1 − ỹ∞ − ã∞)

k−1

+(1 − ỹ − ã∞)
k−1

]
. [12]

Finally, the conditional probability ỹ∞ can be obtained similarly to ṽ∞,
with the additional consideration that for k − 1 neighbors except l at least
one can keep j active and that node j connects to the GCC via at least one
of the k − 1 neighbors. Thus, the degree of node j satisfies k > m, which
also implies that j keeps all its neighbors active. Therefore, the conditional
probabilities ỹ, ỹ∞, and ã∞ in Eq. 12 are replaced by probabilities ṽ, ṽ∞, and
t̃∞. This leads to the following expression for the conditional probability
ỹ∞:

ỹ∞ =
∞∑

k=m+1

kP(k)

〈k〉

k−1∑
s=1

(k − 1

s

)
ṽs
(1 − ṽ)k−1−s

[
1 − (1 −

ṽ∞
ṽ

)
s
(1 −

t̃∞
1 − ṽ

)
k−1−s

]

=
∞∑

k=m+1

kP(k)

〈k〉

[
1 − (1 − ṽ)k−1 − (1 − t̃∞ − ṽ∞)

k−1

+(1 − ṽ − t̃∞)
k−1

]
, [13]

where s represents the number of neighbors that can keep j active. The
graphical solution of the self-consistent equation ỹ∞ is shown in the main
text, where f(ỹ∞) = F(ỹ∞) − ỹ∞ and F(ỹ∞) represents the expression on
the right-hand side of Eq. 13. The value of F(ỹ∞) is obtained by solving the
self-consistent Eqs. 8–12.

The previously defined conditional probabilities allow us to derive the
order parameter, P∞, for induced percolation on undirected networks. For
an arbitrarily chosen node l to belong to the GCC, we have that 1) at least
one of its neighbors should keep it active and 2) node l is attached to the
GCC through at least one of its neighbors. If the degree of node l satisfies
k ≤ m, then the probability that node l belongs to the GCC is 1 − (1 − ỹ)k −
(1 − ỹ∞ − ã∞)k + (1 − ỹ − ã∞)k, whose derivation is similar to Eq. 12 in
ã∞. If the degree of node l satisfies k > m, then the probability that node l
belongs to the GCC is 1 − (1 − ṽ)k − (1 − t̃∞ − ṽ∞)k + (1 − ṽ − t̃∞)k and
the derivation is similar to ỹ∞ in Eq. 13. Therefore, the order parameter P∞
can be computed, for undirected networks, as

P∞ =

m∑
k=0

P(k)
[
1 − (1 − ỹ)k − (1 − ỹ∞ − ã∞)

k
+ (1 − ỹ − ã∞)

k
]

+
∞∑

k=m+1

P(k)
[
1 − (1 − ṽ)k − (1 − t̃∞ − ṽ∞)

k
+ (1 − ṽ − t̃∞)

k
]

.

[14]
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Data Availability. The data from this study are available at GitHub,
https://github.com/ Jia-Rong-Xie. All other data are included in the main text
and/or the SI Appendix.

ACKNOWLEDGMENTS. Y.H. and J.X. thank Youjin Deng and Haijun Zhou
for helpful discussions and the anonymous reviewers for their constructive
comments. This work is supported by the Guangdong High-Level Personnel

of Special Support Program, Young TopNotch Talents in Technological In-
novation (grant no. 2019TQ05X138), Natural Science Foundation of Guang-
dong for Distinguished Youth Scholar, Guangdong Provincial Department
of Science and Technology (grant no. 2020B1515020052), the National
Natural Science Foundation of China (grant nos. 61903385 and 62003156),
Guangdong Major Project of Basic and Applied Basic Research (grant no.
2020B0301030008), and the Chinese Academy of Sciences (grant no. QYZDJ-
SSW-SYS018).

1. D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor and Francis, ed.
2nd Rev., 1994).

2. P. J. Flory, Molecular size distribution in three dimensional polymers. I. Gelation. J.
Am. Chem. Soc. 63, 3083–3090 (1941).

3. W. H. Stockmayer, Theory of molecular size distribution and gel formation in
branched-chain polymers. J. Chem. Phys. 11, 45–55 (1943).

4. M. E. J. Newman, S. H. Strogatz, D. J. Watts, Random graphs with arbitrary degree
distributions and their applications. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64,
026118 (2001).

5. D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts, Network robustness and
fragility: Percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000).

6. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Resilience of the internet to random
breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000).

7. D. J. Watts, A simple model of global cascades on random networks. Proc. Natl.
Acad. Sci. U.S.A. 99, 5766–5771 (2002).

8. S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Critical phenomena in complex
networks. Rev. Mod. Phys. 80, 1275–1335 (2008).

9. C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics. Rev. Mod.
Phys. 81, 591–646 (2009).

10. Y. Hu et al., Local structure can identify and quantify influential global spreaders in
large scale social networks. Proc. Natl. Acad. Sci. U.S.A. 115, 7468–7472 (2018).

11. A. Bashan, Y. Berezin, S. V. Buldyrev, S. Havlin, The extreme vulnerability of interde-
pendent spatially embedded networks. Nat. Phys. 9, 667–672 (2013).

12. R. Parshani, S. V. Buldyrev, S. Havlin, Interdependent networks: Reducing the cou-
pling strength leads to a change from a first to second order percolation transition.
Phys. Rev. Lett. 105, 048701 (2010).

13. S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, S. Havlin, Catastrophic cascade of
failures in interdependent networks. Nature 464, 1025–1028 (2010).

14. J. Gao, S. V. Buldyrev, H. E. Stanley, S. Havlin, Networks formed from interdependent
networks. Nat. Phys. 8, 40–48 (2012).

15. C. D. Brummitt, R. M. D’Souza, E. A. Leicht, Suppressing cascades of load in
interdependent networks. Proc. Natl. Acad. Sci. U.S.A. 109, E680–E689 (2012).

16. J. Xie et al., Detecting and modelling real percolation and phase transitions of
information on social media. Nat. Hum. Behav. 5, 1161–1168 (2021).

17. R. Albert, H. Jeong, A. L. Barabási, Error and attack tolerance of complex networks.
Nature 406, 378–382 (2000).

18. G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Bootstrap percolation
on complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 011103 (2010).

19. S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, k-core organization of complex
networks. Phys. Rev. Lett. 96, 040601 (2006).

20. G. J. Baxter, S. N. Dorogovtsev, K. E. Lee, J. F. F. Mendes, A. V. Goltsev, Critical
dynamics of the k-core pruning process. Phys. Rev. X 5, 031017 (2015).

21. J. H. Zhao, H. J. Zhou, Y. Y. Liu, Inducing effect on the percolation transition in
complex networks. Nat. Commun. 4, 2412 (2013).

22. M. Granovetter, Threshold models of collective behavior. Am. J. Sociol. 83, 1420–
1443 (1978).

23. D. Kempe, J. Kleinberg, É. Tardos, “Maximizing the spread of influence through a
social network” in Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (ACM, 2003), pp. 137–146.

24. F. Morone, H. A. Makse, Influence maximization in complex networks through
optimal percolation. Nature 524, 65–68 (2015).

25. D. Achlioptas, R. M. D’Souza, J. Spencer, Explosive percolation in random networks.
Science 323, 1453–1455 (2009).

26. M. Bauer, O. Golinelli, Core percolation in random graphs: A critical phenomena
analysis. Eur. Phys. J. B 24, 339–352 (2001).

27. Y. Y. Liu, E. Csóka, H. Zhou, M. Pósfai, Core percolation on complex networks. Phys.
Rev. Lett. 109, 205703 (2012).

28. R. Cohen, S. Havlin, Complex Networks: Structure, Stability and Function (Cam-
bridge University Press, 2010).

29. M. E. J. Newman, Networks (Oxford University Press, 2018).
30. N. A. Christakis, J. H. Fowler, The spread of obesity in a large social network over 32

years. N. Engl. J. Med. 357, 370–379 (2007).
31. J. H. Fowler, N. A. Christakis, Cooperative behavior cascades in human social

networks. Proc. Natl. Acad. Sci. U.S.A. 107, 5334–5338 (2010).
32. P. R. Guimarães Jr., M. M. Pires, P. Jordano, J. Bascompte, J. N. Thompson, Indirect

effects drive coevolution in mutualistic networks. Nature 550, 511–514 (2017).
33. T. Ohgushi, O. Schmitz, R. Holt, Trait-Mediated Indirect Interactions: Ecological and

Evolutionary Perspectives (Ecological Reviews, Cambridge University Press, 2012).
34. J. M. Lehn, Supramolecular chemistry. Science 260, 1762–1763 (1993).
35. J. Gierschner et al., Excitonic versus electronic couplings in molecular assemblies:

The importance of non-nearest neighbor interactions. J. Chem. Phys. 130, 044105
(2009).

36. A. E. Rudolph, N. D. Crawford, C. Latkin, J. H. Fowler, C. M. Fuller, Individual and
neighborhood correlates of membership in drug using networks with a higher
prevalence of HIV in New York City (2006-2009). Ann. Epidemiol. 23, 267–274 (2013).

37. J. N. Rosenquist, J. Murabito, J. H. Fowler, N. A. Christakis, The spread of alcohol
consumption behavior in a large social network. Ann. Intern. Med. 152, 426–433,
W141 (2010).

38. Y. Hu, S. Havlin, H. A. Makse, Conditions for viral influence spreading through
multiplex correlated social networks. Phys. Rev. X 4, 021031 (2014).

39. A. L. Nguyen, W. Liu, K. A. Khor, A. Nanetti, S. A. Cheong, The golden eras of
graphene science and technology: Bibliographic evidences from journal and patent
publications. J. Informetrics 14, 101067 (2020).

40. R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Explosive percolation
transition is actually continuous. Phys. Rev. Lett. 105, 255701 (2010).

41. M. Catanzaro, R. Pastor-Satorras, Analytic solution of a static scale-free network
model. Eur. Phys. J. B Cond. Matter Complex Syst. 44, 241–248 (2005).

42. K. I. Goh, B. Kahng, D. Kim, Universal behavior of load distribution in scale-free
networks. Phys. Rev. Lett. 87, 278701 (2001).

43. O. Riordan, L. Warnke, Explosive percolation is continuous. Science 333, 322–324
(2011).

44. P. Grassberger, C. Christensen, G. Bizhani, S. W. Son, M. Paczuski, Explosive percola-
tion is continuous, but with unusual finite size behavior. Phys. Rev. Lett. 106, 225701
(2011).

45. L. Tian, A. Bashan, D. N. Shi, Y. Y. Liu, Articulation points in complex networks. Nat.
Commun. 8, 14223 (2017).

10 of 10 PNAS
https://doi.org/10.1073/pnas.2100151119

Xie et al.
Indirect influence in social networks as an induced percolation phenomenon

D
ow

nl
oa

de
d 

at
 S

un
 Y

at
-S

en
 U

ni
ve

rs
ity

 o
n 

F
eb

ru
ar

y 
25

, 2
02

2 

https://github.com/Jia-Rong-Xie
https://github.com/Jia-Rong-Xie
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100151119/-/DCSupplemental
https://doi.org/10.1073/pnas.2100151119


Supplementary Information for
Indirect influence in social networks as an induced percolation
phenomenon
J. Xie, X. Wang, L. Feng, J.-H. Zhao, W. Liu, Y. Moreno, and Y. Hu

This PDF file includes:

Figs. S1 to S20
Tables S1 to S2
SI References

J. Xie, X. Wang, L. Feng, J.-H. Zhao, W. Liu, Y. Moreno, and Y. Hu 1 of 33



Contents

1 Induced percolation on empirical networks 3
A Raw data for the empirical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
B Collaboration network construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
C Detect the indirect influence mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
D Bias analysis for indirect influence mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 4
E Citation network construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
F Indirect influence mechanism mediates collaboration relationship . . . . . . . . . . . . . . . 5

2 Induced percolation on mixed networks 5

3 Induced percolation on undirected networks 9

4 Order parameters in directed networks 9

5 Scaling behaviors near the critical points 9

6 Generation of scale free networks 10

7 Induced percolation with heterogeneous induced index threshold 11

2 of 33 J. Xie, X. Wang, L. Feng, J.-H. Zhao, W. Liu, Y. Moreno, and Y. Hu



1. Induced percolation on empirical networks

We present more details of the empirical study here. Considering the spreading dynamics related to
human behavior, and at the same time, the availability of high-quality empirical datasets with well
categorized research fields, we focus on exploring behavioral influence through induced percolation on
scientific collaboration networks. Specifically, when a new research field emerges, scientists either stay in
their established field or shift to the emerging field. We therefore want to look at data and empirically
inspect scientists’ behavior and check whether there are signals that indicate that an induced percolation
mechanism might be at work.

To investigate the exact mechanism of scientists’ behavior, we choose four pairs of research fields in physics
that involve large numbers of scientists: Chaos vs. Complex Networks, Phase Transitions vs. Complex
Networks, Electrical Properties of Low-dimensional Structures vs. Optical Properties of Low-dimensional
Structures (hereinafter referred to as EPLDS vs. OPLDS), and Carbon Nanotubes vs. Graphene. For each
pair of fields, the latter field is the emerging field (new field) that attracts scientists from the former field
(old field), which was well established. For the first three pairs of fields, we use data of published articles
from the American Physical Society (APS), ranging from 1999-2006 with article field marked by the PACS
number. For the fourth pair of fields, a dataset from the Web of Science (1) is employed.

A. Raw data for the empirical study.We analyze the datasets of published articles by American Physical
Society (APS) and Web of Science, considered as representative data sources for the studied fields. For the
first three pairs of fields, we analyze articles published in APS, containing the publication date, the PACS
number and a list of authors for each article. The field to which each article belongs can be identified by
PACS numbers. We remove articles consisting of PACS numbers of both the old and new fields to avoid
ambiguity. The number of these excluded papers is generally negligible. The excluded papers in the field of
Phase Transitions vs. Complex Networks account for 2.7% of the total number of papers (4.2% and 2.2%
for the pairs of Chaos vs. Complex Networks and EPLDS vs. OPLDS). In the study of Carbon Nanotubes
vs. Graphene, we take the sorted data (1) of articles from Web of Science. The data contains the same
information as the APS dataset, and the size is much larger than that of APS.

B. Collaboration network construction.Here we take Chaos vs. Complex Networks as an example, while
related descriptions for the rest of pairs of fields are in Table 1 in the main text and Fig. S1. Based on
articles in Chaos or Complex Networks, covering in total 5 years (1999-2003) around the emergence of
the new field (see Fig. S1), we construct a collaboration network. The nodes are the scientists who have
published at least two articles within the five years period, and a link is constructed between any pair of
scientists who have at least one joint publication (five articles and two joint publications for nodes and
links for Carbon Nanotubes vs. Graphene, extended discussions for parameter robustness in Fig. S7-S13).

On the constructed collaboration network, covering 3 years (2001-2003) around the emergence of the
Complex Networks field (see Fig. S1), those scientists who have published at least two (five for Carbon
Nanotubes vs. Graphene) articles in Chaos (old field) yet have not published any articles in Complex
Networks (new field) are defined as focused scientists in Chaos.

C. Detect the indirect influence mechanism. Specifically, those focused scientists are regarded as the
influencers in the collaboration network and labeled as state 1. For any other nodes (influenced) in the
network, we calculate the number of direct and indirect ‘influencers’ for each node. We then observe
whether the behaviors of those influenced scientists follow an induced-percolation-like mechanism. For each
influenced scientist i, we define two measures or indicators. The first indicator is Qi, which quantifies the
proportion of Chaos papers in the subsequent 3 years (2004-2006). The second indicator is the induced
index mi, corresponding to induced percolation, which quantifies the number of indirect influencers of
scientist i. To calculate the induced index, we first identify its state 1 direct neighbors (direct influencers),
denoted as the set ∂i. On each of such neighbors, we count the number of its own state 1 neighbors, and
the maximum count is defined as the number of indirect influencers (see Fig. 1A in the main text). The
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mathematical expression for the induced index reads:

mi = max
j∈∂i
|∂j\i| [S1]

where the set ∂j\i contains the state 1 neighbors (excluding node i) of a direct neighbor j, and |∂j\i| is the
set cardinality. To compare with direct influence, we denote k̃i as the number of direct influencers of node
i, which is the number of its nearest neighbors in state 1. On each of the direct influencers of node i, we
further count their own degree and define the maximum degree as degree index di.

In the spreading of human behavior, k-core percolation and linear threshold percolation are widely
studied models (2–4). That is, the more a person is surrounded by individuals in a certain state (opinions,
behaviors, habits), the more likely the person will maintain the same state. Taking Chaos vs. Complex
Networks as an example, if this type of percolation exists in the above-analyzed collaboration networks,
it would mean that a scientist tends to stay in Chaos if his/her direct collaborators are mostly in Chaos.
The orange line in the left column of Fig. S4 and the comparison of lines with different colors in the right
column show that Qi increases with the induced index mi, indicating that Qi has a strong correlation with
the induced index mi. Conversely, the orange line in the right column of Fig. S4 and the comparison of
the lines with different colors in the left column show that the correlation with k-index is weak, which
appears counter-intuitive. Figs. S7-S8,S11 show consistent results when varying parameters in empirical
settings. By comparing nodes with the same k-core index, we find that the larger the induced index mi,
the stauncher it is for authors to stay in the Chaos field. On the contrary, it is found that for authors with
the same induced index, the value of k-core index has no significant indications. This further shows that
there is a remarkable phenomenon of induced percolation in the collaboration network. In addition, the
degree distributions after induced percolation and k-core percolation behave differently (Fig. S3).

We also introduce the degree index di, which is the highest degree of all stage 1 neighbors of node i.
Formally,

di = max
j∈∂i

kj , [S2]

where kj is the degree of node j. We then compare the effect of induced index mj and degree index di in
Fig. S5 and find similar results as in Fig. S4.

We further introduce an index κi to denote the total number of second-nearest neighbors of node i
with state 1. We then compare the index κi with the induced index mi in Fig. S6 (and Figs. S10, S13
for parameter robustness analysis). Results show that Qi is less associated with the κi. Altogether, by
comparing the induced index mi with the k-core index, the degree index, and the second-nearest neighbor
index, we show that the proportion of old field publications is dominantly determined by the induced index.

Although we mainly focus on induced percolation for a fixed value of m in our theoretical analysis, the
empirical analysis showed that the tendency of state change for a node with different m can be different. As
a first proposal of indirect percolation, we consider the induced percolation under a single parameter, which
is the most simplified form. A straightforward generalization would be to turn the induced probability
from a binary value of 0 or 1 into a continuous function h(mi) ∈ [0, 1] of mi. The function h(mi) can
be interpreted as the probability that a scientist having induced index mi maintains state 1. The higher
the value of mi, the higher the induced probability h(mi) which is in line with the empirical results on
collaboration networks. Thus, the induced percolation in the main text corresponds to the Heaviside
function:

h(mi) =
{

0, mi < m

1, mi ≥ m
[S3]

D. Bias analysis for indirect influence mechanism.Resampling (e.g. bootstrap and jackknife) is widely
used to estimate the bias (5). Here, we used bootstrap resampling to investigate the effects of sampling bias.
Specifically, we resampled 100% of the articles published in 2004-2006 (2014-2016 for Carbon Nanotubes
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vs. Graphene) with replacement, and the error bars in Fig. 1B,C,E and Figs. S4-S13 are 95% confidence
interval obtained by 10000 generated resamples.

E. Citation network construction.The citation networks are constructed with the same set of scientists
(nodes) as the collaboration networks, while a directed link is constructed if any pair of scientists has one
(eight for Carbon Nanotubes vs. Graphene) citation relationship in their published articles. The directed
part of a citation networks are obtained by removing all the bidirectional links from the citation networks.
The details of the citation networks are shown in Table S1.

F. Indirect influence mechanism mediates collaboration relationship.We analyze whether the indirect
relations in the first period will result in more direct collaborations in the later (observation) period through
their common direct neighbors (bridge nodes). Taking Fig. S14a (the same with Fig. 1A in the main text)
as an example for the node of interest i, we calculate the proportion of publications in the old field where
its nearest neighbor j coauthors with both node i and its second-nearest neighbors, and then divide it
by the total number of old field publications coauthored by node i and its second-nearest neighbors. In
addition, we compare the participation ratio of direct neighbors in two scenarios: that is, node i coauthors
with a second-nearest neighbor in state 1 (set h) or in state 0 (set s). The proportion is calculated during
the observation period (Carbon Nanotubes vs. Graphene is 2014-2016, the rest pairs are 2004-2006, see Fig.
S1, which is also the time interval for calculating Qi.

Figure S14b shows that among the old field publications: node j is more likely to appear in publications
coauthored by i-h rather than those coauthored by i-s. In other words, node i and h, via node j, are more
likely to coauthor old field papers in the observation period. This suggests that the quantitative correlation
between mi and Qi does mediate the collaboration relationship.

2. Induced percolation on mixed networks

Induced percolation on mixed networks with a mix of directed and undirected links is defined as follows.
All nodes are initially set to state 1. A node l remains in state 1 if at least one of its undirected or directed
links has a node j in state 1, and this node j has at least m neighbors (including in-coming neighbors and
undirected neighbors while excluding node l) with state 1 (as illustrated in Fig. S15a for the case of m = 2);
otherwise node l changes to state 0 at the next time step. The formulation of the induced percolation
framework on mixed networks is more complicated than that on directed and undirected networks. One
of the main challenges is given by the intertwined effect of directed and undirected edges in maintaining
neighbors state and connecting neighbors to the GOUT, which significantly increases the possibilities for a
node connecting to GOUT. For example, a mixed network needs to consider staying active through directed
neighbors and connecting to GOUT through undirected neighbors, or staying active through undirected
neighbors and connecting to GOUT through directed outgoing links, which is not the case for directed and
undirected networks. Therefore, in order to deal with this intertwined issue, we employ a multilayer network
approach to separate the directed and undirected neighbors by layers. Thus, nodes on the same layer
maintain the same pattern in relation to them being active, which enables a recursive calculation. Through
aggregation of network layers, we account for all the possibilities in the calculation of the order parameter
while effectively avoiding the previous challenge of dealing concurrently with directed and undirected links.

To derive the order parameter for induced percolation on mixed networks, we thus represent a mixed
network by a multiplex network: one layer includes undirected links and the other layer includes directed
links. A mixed random network is generated by assigning a single direction to an undirected link chosen
from an undirected random network. The proportion p of assigned directed links and the average degree 〈k〉
of the underlying undirected network constitute the parameter space for the generation of mixed networks.
In this setting, the average degree in the undirected layer 〈k〉u and the average degree in the directed layer
〈k〉d follow 〈k〉u = 〈k〉 (1− p) and 〈k〉d = 〈k〉p

2 . By randomly selecting a directed link in the directed layer,
the excess degree distribution of the starting node can be written as koP (k,ki,ko)

〈k〉d
, where ki, ko represent the
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in-degree and out-degree in the directed layer, respectively, and k is the degree in the undirected layer.
Similarly, if an undirected link is randomly chosen in the undirected layer, the excess degree distribution of
its end node follows kP (k,ki,ko)

〈k〉u
. Following the same arguments as for the case of undirected networks, we

use the undirected degree k of a node l to deduce the percolation probability, instead of using the number
of undirected active neighbors.

On mixed networks, we mainly consider GOUT as the order parameter. For an active node l to be in
GOUT, at least one active in-coming or undirected neighbor should belong to the GOUT. For a randomly
chosen node l to remain in state 1, the definition of induced percolation implies that there is at least one
active neighbor j in the directed layer or at least one active neighbor j in the undirected layer, and node
j has s active incoming neighbors in the directed layer and ũ active neighbors in the undirected layer
(excluding node l) satisfying s+ ũ ≥ m. As noted, given that the number ũ of active neighbors is closely
associated with the undirected degree k of node j, we use k instead of ũ in deriving GOUT.

To obtain the condition for a node j to keep its neighbors active, we consider three cases separately: (i)
If s+ k > m, then j can maintain neighbors either in the directed layer or in the undirected layer active;
(ii) If s+ k < m, then j cannot keep any neighbors active; (iii) if s+ k = m, then node j cannot keep its
undirected neighbors active, but node j can keep its outgoing neighbors in the directed layer active under
the additional condition that all undirected neighbors of j are active (ũ = k).

We start with the definition of a list of intermediate conditional probabilities, as described in Table S2.
The order parameter P∞ is eventually obtained based on solutions of the defined probabilities. We present
the definition and the solution of intermediate conditional probabilities one at a time.

The first probability y is defined as the probability that node j can keep node l active through a randomly
selected directed link (j, l). As per the definition of induced percolation, node j can keep node l active if
s+ k ≥ m and j is active. In the case of s+ k > m, node j is kept active by at least one of the s active
in-coming neighbors or k undirected neighbors with probability 1−

(
a
x

)s (1− ṽ)k. In the case of s+ k = m,
only when all the undirected neighbors are active, with probability x̃k, node j can keep node l active. From
the above analysis, the equation for solving the probability y reads

y =
∞∑

k,ki,ko

koP (k, ki, ko)
〈k〉d

ki∑
s=0

(
ki
s

)
(1− x)ki−sxs

×
{
I(s+ k > m)

[
1−

(
a

x

)s
(1− ṽ)k

]
+ I(s+ k = m)

[
x̃k − ãk

(
a

x

)s]} [S4]

where I(x) represents the indicator function of the logical statement x: I(x) = 1 if x is true, otherwise
I(x) = 0.

For the probability a, the degree of node j satisfies s+k ≤ m. When s+k < m, node j cannot keep node
l active. The probability a thus reduces to the probability of node j remaining active under the condition of
having s active in-coming neighbors, which is 1−

(
a
x

)s (1− ỹ)k. When s+ k = m, the probability that node
j can not keep node l active follows 1−

(
a
x

)s (1− ỹ)k − x̃k + ãk
(
a
x

)s, where (ax)s (1− ỹ)k is the probability
of j being inactive (in state 0), and x̃k is the probability of all undirected neighbors being active. The
term

(
a
x

)s
ãk gives the probability that node j is inactive and at the same time all undirected neighbors are

active too. According to the above analysis, the probability a can be obtained as

a =
∞∑

k,ki,ko

koP (k, ki, ko)
〈k〉d

ki∑
s=0

(
ki
s

)
(1− x)ki−sxs

×
{
I(s+ k ≤ m)

[
1−

(
a

x

)s
(1− ỹ)k

]
− I(s+ k = m)

[
x̃k − ãk

(
a

x

)s]}
.

[S5]

For the conditional probability ṽ, the node j can keep node l active if s+ k > m and j is active, which
also indicates that j can keep all undirected neighbors active. Therefore, the equation for solving the
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probability ṽ is

ṽ =
∞∑

k,ki,ko

kP (k, ki, ko)
〈k〉u

ki∑
s=0

I(s+ k > m)
(
ki
s

)
(1− x)ki−sxs [S6]

The derivation of the conditional probability ỹ is similar to ṽ, except that node l cannot keep node j
active. The additional requirement in calculating probability ỹ is that node j is kept active by at least
one of s active neighbors in the directed layer and k − 1 neighbors except l in the undirected layer. The
corresponding probability follows 1−

(
a
x

)s (1− ṽ)k−1. Therefore, the corresponding equation to solve ỹ is

ỹ =
∞∑

k,ki,ko

kP (k, ki, ko)
〈k〉u

ki∑
s=0

I(s+ k > m)
(
ki
s

)
(1− x)ki−sxs

[
1−

(
a

x

)s
(1− ṽ)k−1

]
[S7]

For the conditional probability ã, the event that node j is active but cannot keep node l active indicates
s+ k ≤ m. Therefore, the solution to the probability ã is similar to Eq. (S5):

ã =
∞∑

k,kiko

kP (k, ki, ko)
〈k〉u

ki∑
s=0

I(s+ k ≤ m)
(
ki
s

)
(1− x)ki−sxs

[
1−

(
a

x

)s
(1− ỹ)k−1

]
[S8]

The derivation of the probability y∞ is analogous to the derivation of the probability y, while an additional
requirement is that at least one of the s active neighbors in the directed layer and k neighbors in the
undirected layer belong to GOUT. Therefore, the equation to solve y∞ is expressed as

y∞ =
∞∑

k,ki,ko

koP (k, ki, ko)
〈k〉d

ki∑
s=0

(
ki
s

)
(1− x)ki−sxs

× [I(s+ k > m)Y1(s, k) + I(s+ k = m)Y2(s, k)]

[S9]

where Y1(s, k) denotes the probability that j connects to GOUT under the conditions s + k > m and j
being active. In this case, node j can keep all its undirected neighbors active. According to the definition
of induced percolation, at least one of s+ k neighbors keeps j active, and j connects to GOUT through at
least one of the s+ k neighbors. Therefore, the probability Y1(s, k) is calculated as

Y1(s, k) =
s∑

d=0

k∑
u=0

I(d+ u > 0)
(
s

d

)(
y

x

)d (a
x

)s−d(k
u

)
ṽu(1− ṽ)k−u

×

1−
(

1− y∞
y

)d (
1− a∞

a

)s−d (
1− ṽ∞

ṽ

)u(
1− t̃∞

1− ṽ

)k−u
= 1−

(
1− x∞

x

)s
(1− ṽ∞ − t̃∞)k −

(
a

x

)s
(1− ṽ)k +

(
a− a∞
x

)s
(1− ṽ − t̃∞)k

[S10]

In addition, Y2(s, k) represents the probability that (i) node j can keep its out-going neighbor l active
and (ii) j connects to GOUT, given the condition s+ k = m. In this case, node j can keep node l active if
all undirected neighbors of j are active. Therefore, Y2(s, k) is calculated as

Y2(s, k) =
s∑

d=0

k∑
u=0

I(d+ u > 0)
(
s

d

)(
y

x

)d (a
x

)s−d(k
u

)
ỹuãk−u

×
[
1−

(
1− y∞

y

)d (
1− a∞

a

)s−d (
1− ỹ∞

ỹ

)u (
1− ã∞

ã

)k−u]

= x̃k −
(

1− x∞
x

)s
(x̃− x̃∞)k −

(
a

x

)s
ãk +

(
a− a∞
x

)s
(ã− ã∞)k

[S11]
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The derivation of the probability a∞ is similar to y∞ and a. The probability a∞ is defined for the event
in which j is active but j cannot keep l active, indicating that s+ k ≤ m. However, in the case of s+ k = m
and if all undirected neighbors of node j are active, node j can keep node l active. The corresponding
probability, which reads I(s+ k = m)Y2(s, k), should be subtracted from the probability a∞. Therefore,
the probability a∞ can be written as

a∞ =
∞∑

k,kiko

koP (k, ki, ko)
〈k〉d

ki∑
s=0

(
ki
s

)
(1− x)ki−sxs

× [I(s+ k ≤ m)Y3(s, k)− I(s+ k = m)Y2(s, k)] .

[S12]

where Y3(s, k) denotes the probability that node j connects to GOUT through neighbors other than l, given
that s+ k ≤ m,

Y3(s, k) =
s∑

d=0

k∑
u=0

I(d+ u > 0)
(
s

d

)(
y

x

)d (a
x

)s−d(k
u

)
ỹu(1− ỹ)k−u

×
[
1−

(
1− y∞

y

)d (
1− a∞

a

)s−d (
1− ỹ∞

ỹ

)u (
1− ã∞

1− ỹ

)k−u]

= 1−
(

1− x∞
x

)s
(1− x̃∞)k −

(
a

x

)s
(1− ỹ)k +

(
a− a∞
x

)s
(1− ỹ − ã∞)k.

[S13]

The probability t̃∞ is defined for the event that node j cannot keep node l active and j connects to
GOUT through neighbors other than l, given the condition that l can keep j active. The event that j
cannot keep node l active indicates s+ k ≤ m. Therefore, we have that

t̃∞ =
∞∑

k,ki,ko

kP (k, ki, ko)
〈k〉u

ki∑
s=0

I(s+ k ≤ m)
(
ki
s

)
(1− x)ki−sxs

×
[
1−

(
1− x∞

x

)s
(1− x̃∞)k−1

] [S14]

Probabilities ṽ∞, ỹ∞ and ã∞ are derived analogously to ṽ , ỹ and ã, except that additional conditions
are required: node j connects to GOUT through at least one of the s active in-coming neighbors and k − 1
undirected neighbors (except l). Therefore, the probability ṽ∞ is obtained from

ṽ∞ =
∞∑

k,ki,ko

kP (k, ki, ko)
〈k〉u

ki∑
s=0

I(s+ k > m)
(
ki
s

)
(1− x)ki−sxs

×
[
1−

(
1− x∞

x

)s
(1− ṽ∞ − t̃∞)k−1

] [S15]

and

ỹ∞ =
∞∑

k,kiko

kP (k, ki, ko)
〈k〉u

ki∑
s=0

I(s+ k > m)
(
ki
s

)
(1− x)ki−sxsY1(s, k − 1) [S16]

where Y1(s, k − 1) means that (i) j can keep the undirected neighbor l active, and (ii) j connects to GOUT
through nodes other than l, given that s+ k > m. The value of Y1(s, k − 1) is obtained from the equation
Eq. (S10). Analogously, the probability ã∞ is expressed as

ã∞ =
∞∑

k,kiko

kP (k, ki, ko)
〈k〉u

ki∑
s=0

I(s+ k ≤ m)
(
ki
s

)
(1− x)ki−sxsY3(s, k − 1) [S17]
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where Y3(s, k − 1) represents the probability that j connects to GOUT through neighbors other than l,
given that s+ k ≤ m, whose value is determined by the equation Eq. (S13).

Based on the solutions of the above defined probabilities, the order parameter GOUT on mixed networks
can be calculated considering two contributions. When the total number of active neighbors s in the
directed layer and the number k of neighbors in the undirected layer satisfies s+k > m and when j is active,
node j can keep all the undirected neighbors active. The probability that j belongs to GOUT is Y1(s, k).
However, when s+ k ≤ m, node j cannot keep any of its undirected neighbors active. The probability that
node j belongs to GOUT is Y3(s, k). Finally, the order parameter GOUT is given by

P∞ =
∞∑

k,kiko

P (k, ki, ko)
ki∑
s=0

(
ki
s

)
(1− x)ki−sxs

× [I(s+ k > m)Y1(s, k) + I(s+ k ≤ m)Y3(s, k)]

[S18]

where Y1(s, k) and Y3(s, k) are established in equations Eqs. (S10) and (S13).

3. Induced percolation on undirected networks

We presented the theoretical analysis of induced percolation on undirected networks in the Methods section
of the main text. Here, we supplement the analysis with illustrations on the definition of induced percolation
on undirected networks (as shown in Fig. S16). In addition, we illustrate the relation between conditional
probabilities (as shown in Fig. S17) defined when deriving the order parameter P∞ on undirected networks.
According to the definition of induced percolation, even on an acyclic random undirected network, there will
be a special kind of short-range feedback, termed as reciprocal feedback (see Fig. S2), which complicates
the theoretical analysis.

4. Order parameters in directed networks

In directed networks, there are three types of giant connected components: giant strongly connected
component (GSCC), giant out-going component (GOUT) and giant in-coming component (GIN), as shown
in Fig. 2 in the main text. Analogous to “component” in undirected networks, there is a related concept in
directed networks: strongly connected component (SCC). A strongly connected component is a group of
nodes within which any pair of nodes are mutually reachable. The giant strongly connected component
(GSCC) refers to the largest strongly connected component whose size is comparable with the entire network.
Based on GSCC, two related concepts are built: giant out-component (GOUT) and giant in-component
(GIN). GOUT is the group of nodes that can be cascaded to from any node in GSCC, while GIN is the
group of nodes from which every node in GSCC can be cascaded to. The definition implies that GSCC is a
subset of GOUT and GIN. In undirected networks, GSCC, GIN and GOUT are the same set of nodes.

5. Scaling behaviors near the critical points

Although the scaling relations around the critical hybrid point has been so far done for a single fixed network
parameter, the scaling relation and the association to Landau’s mean-field theory can be generalized to
different network parameters. Specifically, we further present the generalization of the jump of GOUT and
the size deviation of GOUT for mixed networks at the critical hybrid point C(k∗, p∗).

The order parameter P∞ on mixed networks exhibits hybrid phase transitions with the presence of certain
amount of directed links. Within the hybrid transition, variables of P∞ follow a set of scaling relations
with critical exponents in line with Landau’s mean-field theory. Specifically, the size of the jump of GOUT,
∆P∞ := limp→p−

c
P∞(k∗ + ∆k, p)− limp→p+

c
P∞(k∗ + ∆k, p), where pc is the critical point at which the first

order transition occurs, follows a scaling function of ∆k with the critical exponent η = 1/2 (Fig. S18)

∆P∞ (k∗ + ∆k) ∼ (∆k)
1
2 . [S19]
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The scaling relation between ∆P∞ and p− p∗ is presented in the main text. If 〈k〉 is fixed at k∗ and we
vary p in the vicinity of p∗, the size deviation of GOUT can be quantified by the following scaling function
of p− p∗ with critical exponent θ = 1/3 (Fig. S19), reached from both below and above,

|P∞(k∗, p)− P ∗∞(k∗, p∗)| ∼ |p− p∗|
1
3 . [S20]

The scaling behavior of GOUT when fixing p at p∗ is presented in the main text.

6. Generation of scale free networks

To verify the theoretical analysis of induced percolation, we present the order parameter GOUT on scale-free
networks, generated under a wide range of degree exponents. The undirected scale-free (SF) networks
show power-law degree distribution as P (k) ∝ k−γ with γ as the degree exponent. The SF networks can
be generated with the configuration model, which is a process based on the degree sequence for nodes
derived directly from the degree distribution. The static model (6, 7) can also be adopted to generate both
undirected and directed random graphs, which are asymptotically scale-free at large degrees.

We first consider the construction of undirected SF networks with the static model. Here we generate
approximately an undirected SF network instance with a degree exponent γ of N nodes and an average
degree 〈k〉. Initially, a null graph has a given collection of N nodes with labels i = 1, 2, · · · , N with no
links. Each node is assigned with a weight as w(i) ∼ i−ξ with ξ ≡ 1/(γ − 1). Then a size of M = 〈k〉N/2
links are added into the null graph one by one. For each link, two distinct end-nodes are chosen randomly
with probabilities to their respective weights. The degree distribution of the graphs generated by the static
model has an analytical form. For the case of SF networks with a mean degree 〈k〉, we have (6, 7)

P (k) = 1
ξ

(〈k〉(1− ξ))k

k! E−k+1+ 1
ξ
(〈k〉(1− ξ)), [S21]

Q(k) = 1− ξ
ξ

(〈k〉(1− ξ))k−1

(k − 1)! E−k+1+ 1
ξ
(〈k〉(1− ξ)). [S22]

The equation Eα(x) ≡ xα−1Γ(1− α, x), with Γ(1− a, x) as an upper incomplete gamma function. For large
k, we have P (k) ∝ k−γ . We can derive the summation rule as

+∞∑
k=0

P (k)xk = 1
ξ
E1+ 1

ξ
(〈k〉(1− ξ)(1− x)), [S23]

+∞∑
k=1

Q(k)xk−1 = 1− ξ
ξ

Es=0(〈k〉(1− ξ)(1− x)). [S24]

The directed scale-free networks with exponential degree distribution for both in-degrees and out-degrees
can also be generated with the static model. For example, we generate here a directed SF network instance
with an in-degree exponent γin and an out-degree exponent γout of N nodes and an average degree 〈k〉.
We first define two parameters ξin ≡ 1/(γin − 1) and ξout ≡ 1/(γout − 1). Initially, for a null graph with
N nodes with labels i = 1, 2, · · · , N without links, each node is assigned with two weights, the in-weight
win(i) ∼ i−ξin and the out-weight wout(i) ∼ i−ξout . To decouple the correspondence between the in-node
and out-node weights, a permutation process can be carried out for the in-node or out-node weights or
both. Then a number of links M = 〈k〉N are added into the null graph. In each link addition step, two
distinct nodes i and j are chosen with probabilities proportional to the out-weight and in-weight of nodes
respectively, and then an link (i, j) as i→ j is established. For large kin and kout, the graph instance shows
a degree distribution P (kin, kout) ≈ k−γin

in × k−γout
out . The set of summation formulae like those in the context

of undirected graphs can also be derived.
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7. Induced percolation with heterogeneous induced index threshold

The induced percolation (see Eq. [2] in the main text) corresponds to the Heaviside function, which can be
generalized to a slightly complicated form, for example,

h(mi) =


0, mi = 0
r, mi = 1
1, mi ≥ 2

. [S25]

For a high value of r, the network disintegrates in a form of a continuous phase transition, whereas for a
low value of r, the network disintegrates in a first order transition (see Fig. S20).
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Fig. S1. Illustration of the empirical analysis performed over a period of eight years. Panel (a)
shows the period used to construct collaboration networks, from which “focused” scientists and scientists
behavioral changes in research focus are extracted. Solid lines show the numbers of publications in Complex
Networks and OPLDS, characterizing the emergence of new fields. (b) shows the time windows used for
Carbon Nanotubes vs. Graphene. The solid line shows the numbers of publications in the emerging field of
Graphene.
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Fig. S2. Schematic representation of reciprocal feedback. For a 4-induced percolation, nodes i and j
have a reciprocal feedback effect at inducing each other to maintain their states. If one neighbor of node j
is removed, the mutual induction is destroyed, and all state 1 neighbors will change to state 0.

12 of 33 J. Xie, X. Wang, L. Feng, J.-H. Zhao, W. Liu, Y. Moreno, and Y. Hu



           
 

    

   

    

   

    

              

Degree, 𝑘

2-induced percolation

2-core percolation

D
eg

re
e

 d
is

tr
ib

u
ti

o
n

, 𝑃
(𝑘
)

Focused scientists 
in Chaos

a

           
 

    

   

    

   

    

              

Degree, 𝑘

3-induced percolation

3-core percolation

Focused scientists 
in Chaos

b

           
 

    

   

    

   

    

   

              

Degree, 𝑘

4-induced percolation

4-core percolation

Focused scientists 
in Chaos

c

Fig. S3. Empirical degree distribution described by the induced percolation and the k-core
percolation. On the constructed empirical collaboration network of Chaos vs. Complex Networks (1999-
2003), we perform the induced percolation and the k-core percolation and show the degree distribution in
the giant connected component (equivalent to GOUT in directed networks). Panels (a)-(c) show the induced
percolation of m = 2, 3, 4 and k-core percolation of k = 2, 3, 4.
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Fig. S4. Comparison between the induced index and the k-core index. Empirical analyses include
four pairs of fields: (a-b) Chaos vs. Complex Networks; (c-d) Phase Transitions vs. Complex Networks; (e-f)
EPLDS vs. OPLDS; (g-h) Carbon Nanotubes vs. Graphene. Left panels (a,c,e,g) show the proportion Qi

of publications in the old field as a function of the induced index mi. The proportion Qi is averaged over
authors with induced index (orange line). To compare with the k-core percolation, we separately plot Qi for
two groups of scientists of top and bottom 50% of k-core index values, shown as the green and blue lines.
Likewise, the right panels (b,d,f,h) show Qi as a function of the k-core index and the separated Qi for two
groups of top and bottom 50% of induced index. In the left panels, the trend of Qi is strongly determined
by the induced index, irrespective of the division of high or low k-core index groups. However, in the right
panels, the trend of Qi is hardly affected by the k-core index. Conversely, fixing k-core index, the proportion
Qi of higher induced index is always larger than those of lower induced index.
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Fig. S5. Comparison between the induced index and the degree index. Left panels (a,c,e,g) show
the proportion Qi of publications in the old field as a function of the induced index mi. The proportion Qi

is averaged over authors with induced index (orange line). We separately plot Qi for two groups of scientists,
namely, top and bottom 50% of degree index values (green and blue lines). Likewise, the right panels (b,d,f,h)
show Qi as a function of the degree index and the separated Qi for the two groups of top and bottom 50% of
induced index. In the left panels, the trend of Qi is strongly determined by the induced index, irrespective
of the division of high or low degree index. However, in the right panels, the trend of Qi is hardly affected
by the degree index. Conversely, fixing the degree index, the proportion Qi of higher induced index is almost
always larger than those of lower induced index.
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Fig. S6. Comparison between the induced index and the second-nearest neighbor index. Left
panels (a,c,e,g) show the proportion Qi of publications in the old field as a function of the induced index mi.
To compare with the second-nearest neighbor index κi, we separately plot Qi for two groups of scientists that
correspond to the top and bottom 50% of second-nearest neighbor index, shown as the green and blue lines.
Likewise, the right panels (b,d,f,h) show Qi as a function of the second-nearest neighbor index κi. Similarly,
the green and blue lines of Qi correspond to the scientists at the top and bottom 50% of the induced index.
In the left panels, the trend of Qi is strongly determined by the induced index, irrespective of the division
of high or low second-nearest neighbor index groups. However, in the right panels, the trend of Qi is less
relevant with the second-nearest neighbor index. Conversely, fixing the second-nearest neighbor index, the
proportion Qi for scientists with a higher induced index is always larger than the proportion for scientists
with a lower induced index.
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Fig. S7. Parameter robustness in observing the induced effect. Panel (a) shows the result of
lengthening the observation period by one year (2004-2007 for the first three pairs of fields, and 2014-2017
for the Carbon Nanotubes vs. Graphene field). Panel (b) shows the result of including more authors in
the constructed networks: for the first three pairs, all authors that published at least 1 instead of 2 papers
in 1999-2003 are included; for the fourth pair, all authors that published at least 2 instead of 5 papers in
2009-2013 are included.
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Fig. S8. Parameter robustness in comparing the induced index with the k-core index. All results
are obtained by lengthening the state observation period by one year (2004-2007 for the first three pairs of
fields, and 2014-2017 for Carbon Nanotubes vs. Graphene). The remaining parameters are kept the same
as in Table 1 of the Main text.
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Fig. S9. Parameter robustness in comparing the induced index with the degree index. Parameter
settings follow the same as Fig. S8.
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Fig. S10. Parameter robustness in comparing the induced index with the second-nearest neigh-
bor index. Parameter settings follow the same as Fig. S8.

20 of 33 J. Xie, X. Wang, L. Feng, J.-H. Zhao, W. Liu, Y. Moreno, and Y. Hu



             

   

   

   

 

   

    
   

   

   

   

 

   

      
    

   

    

   

    

   

    

   

   

   

   

   

   

 

                  
   

   

   

   

   

 

    

   

   

   

   

   

   

 

                       

   

   

   

   

   

           

   

   

   

   

   

   

P
ro

p
o

rt
io

n
 o

f 
p

u
b

lic
at

io
n

s 
in

 o
ld

 f
ie

ld
, 𝑄

𝑖

𝑘-core index, ෨𝑘𝑖Induced index, 𝑚𝑖

a b

c d

e f

g h

Low 𝑘-core index scientists

High 𝑘-core index scientists

All scientists

Low induced index scientists

High induced index scientists

All scientists

Fig. S11. Parameter robustness in comparing the induced index with the k-core index. All results
are obtained by including more authors in the constructed networks: for the first three pairs, all authors
that published at least 1 instead of 2 papers in 1999-2003 are included; for the fourth pair, all authors that
published at least 2 instead of 5 papers in 2009-2013 are included. Remaining parameters are kept the same
as in Table 1 of the Main text.
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Fig. S12. Parameter robustness in comparing the induced index with the degree index. Parameter
settings follow the same as Fig. S11.
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Fig. S13. Parameter robustness in comparing the induced index with the second-nearest neigh-
bor index. Parameter settings follow the same as Fig. S11.
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Fig. S14. More new collaborations formed due to the indirect influence mechanism. Left panel
illustrates an example of a scientist i, its direct neighbor j and the second-nearest neighbors in state 1 (set
h) and second-nearest neighbors in state 0 (set s). Right panel shows that among the old field publications,
what are the proportions that j participates in the joint papers between i and its state-1 second-nearest
neighbors h (pink bar), and the same proportion quantity for joint papers between i and its state-0 second-
nearest neighbors s (gray bar). The old field publications are calculated in the observation period (2004-2006
for the first three pairs of fields and 2014-2016 for Carbon Nanotubes vs. Graphene).
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Fig. S15. Illustration of induced percolation on mixed networks.
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Fig. S16. Illustration of induced percolation on undirected networks.
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Fig. S17. Graphical illustration of conditional probabilities and their calculations for induced
percolation on undirected networks.
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Fig. S18. Scaling behavior of ∆P∞ as a function of ∆k = 〈k〉 − k∗ when approaching the critical
point from above. The induced percolation is performed on mixed networks.
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Fig. S19. The change of P∞ near the critical point p∗ as a function of ∆p = p − p∗ when fixing
〈k〉 = k∗. The induced percolation is performed on mixed networks.
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Fig. S20. Order parameter GOUT for the generalized induced probability. Markers are the
numerical results using Eq. (S25) and solid lines are the corresponding theoretical predictions. For r > 2/3,
the network undergoes a continuous phase transition, while for r < 2/3, the network undergoes a first order
phase transition, with the height of the jump represented by the black dash line. For r = 2/3, the phase
transition happens in 〈k〉 = 1.5. The results are performed on directed ER networks.
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Table S1. The description of citation networks in empirical studies.

Citation network Num. authors N Num. directed links Md Num. undirected links Mu

Chaos vs. Complex Networks 1833 11791 2676
Phase Transitions vs. Complex Networks 1265 3784 2811

EPLDS vs. OPLDS 2069 14554 3321
Carbon Nanotubes vs. Graphene 20011 168964 30729
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Table S2. Definition of conditional probabilities used to derive the probability of induced percolation on
mixed networks. Each row shows one conditional probability. The first column shows the notation used
to denote the conditional probability that the event in the fourth column occurs for a randomly selected
undirected link {j, l} or a directed link (j, l), given the conditional event presented in the third column.
The right arrow (j → l) represents that node j can keep node l active, otherwise denoted as j 9 l. For
example, the conditional probability ṽ∞ shows the probability that given node l can keep node j active: (i)
node j can keep node l active and (ii) l connects to GOUT through node j.

Conditional probability Link type Conditional event Occurring event Relation

y
Directed

(j, l) None
j → l

a j is active but j 9 l

x j is active x = y + a

ṽ

Undirected
{j, l}

l→ j j → l

ỹ l 9 j j → l

ã l 9 j j is active but j 9 l

x̃ l 9 j j is active x̃ = ỹ + ã

y∞ Directed
(j, l) None

(i) j → l

and (ii) l
connects to
GOUT via j

a∞ (i) j 9 l

x∞ (i) j is active x∞ = y∞ + a∞

t̃∞

Undirected
{j, l}

l→ j (i) j 9 l

ṽ∞ l→ j (i) j → l

ỹ∞ l 9 j (i) j → l

ã∞ l 9 j (i) j 9 l

x̃∞ l 9 j (i) j is active x̃∞ = ỹ∞ + ã∞

32 of 33 J. Xie, X. Wang, L. Feng, J.-H. Zhao, W. Liu, Y. Moreno, and Y. Hu



References

1. AL Nguyen, W Liu, KA Khor, A Nanetti, SA Cheong, The golden eras of graphene science and
technology: Bibliographic evidences from journal and patent publications. J. Informetrics 14, 101067
(2020).

2. S Carmi, S Havlin, S Kirkpatrick, Y Shavitt, E Shir, A model of Internet topology using k-shell
decomposition. Proc. Natl. Acad. Sci. 104, 11150–11154 (2007).

3. M Kitsak, et al., Identification of influential spreaders in complex networks. Nat. physics 6, 888–893
(2010).

4. S Pei, L Muchnik, JS Andrade Jr, Z Zheng, HA Makse, Searching for superspreaders of information in
real-world social media. Sci. reports 4, 1–12 (2014).

5. PI Good, Resampling methods. (Springer), (2006).
6. KI Goh, B Kahng, D Kim, Universal behavior of load distribution in scale-free networks. Phys. review

letters 87, 278701 (2001).
7. M Catanzaro, R Pastor-Satorras, Analytic solution of a static scale-free network model. The Eur. Phys.

J. B-Condensed Matter Complex Syst. 44, 241–248 (2005).

J. Xie, X. Wang, L. Feng, J.-H. Zhao, W. Liu, Y. Moreno, and Y. Hu 33 of 33


