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Detailed characterization of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) transmission across different settings can help design less disruptive interven-
tions. We used real-time, privacy-enhanced mobility data in the New York City, NY and
Seattle, WA metropolitan areas to build a detailed agent-based model of SARS-CoV-2
infection to estimate the where, when, and magnitude of transmission events during the
pandemic’s first wave. We estimate that only 18% of individuals produce most infections
(80%), with about 10% of events that can be considered superspreading events (SSEs).
Although mass gatherings present an important risk for SSEs, we estimate that the bulk
of transmission occurred in smaller events in settings like workplaces, grocery stores, or
food venues. The places most important for transmission change during the pandemic
and are different across cities, signaling the large underlying behavioral component
underneath them. Our modeling complements case studies and epidemiological data
and indicates that real-time tracking of transmission events could help evaluate and
define targeted mitigation policies.

COVID-19 | mobility | location | superspreading event

Without effective pharmaceutical interventions, the COVID-19 pandemic triggered the
implementation of severe mobility restrictions and social distancing measures worldwide
aimed at slowing down the transmission of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). From shelter in place orders to closing restaurants/shops or restricting
travel, the rationale of those measures is to reduce the number of social contacts, thus
breaking transmission chains. Although individuals may remain highly connected to
household members or close contacts, these measures reduce the connections in the general
community that allow the virus to move through the network of human contacts. Some
venues may attract more individuals from otherwise unconnected social networks or may
attract individuals who are more active and thus have greater exposure. Understanding
how interventions targeted at particular venues could impact transmission of SARS-CoV-
2 can help us devise better nonpharmaceutical interventions (NPIs) that pursue public
health objectives while minimizing disruption to the economy, the education system, and
other facets of everyday life.

Although it is by now clear that NPIs have helped to mitigate the COVID-19 pandemic
(1), most of the evidence is based on measuring the subsequent reduction in the case
growth rate or secondary reproductive number. For example, econometric models were
used to estimate the effect of the introduction of NPIs on the secondary reproductive
number (2, 3). Other studies have shown directly (through correlations or statistical
models) (4) or indirectly (through epidemic simulations) (5, 6) the relationship between
mobility or individuals’ activity and number of cases. Unfortunately, most of the data used
so far do not have the granularity required to assess how social contacts and SARS-CoV-2
transmission events are modified by NPIs (7).

This is especially important given the heterogeneous spreading of SARS-CoV-2.
Overdispersion in the number of secondary infections produced by a single individual
was an important characteristic of the 2003 SARS pandemic (8) and has been similarly
observed for SARS-CoV-2 (9). Several drivers of superspreading events (SSEs) have
been proposed: biological, due to differences in individuals’ infectiousness; behavioral,
caused by unusually large gatherings of contacts; and environmental, in places where
the surrounding conditions facilitate spread (10). Transmissibility depends critically on
the characteristics of the place where contacts happen, with many SSEs documented
in crowded, indoor events with poor ventilation. A characteristic of this overdispersion
is that most infections (around 80%) are due to a small number of people or places
(20%), suggesting that better-targeted NPIs or cluster-based contact tracing strategies
can be devised to control the pandemic (11). Although several studies have provided
insights on SSEs (7, 12), given their outsized importance for SARS-CoV-2, we need better
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Fig. 1. Network components, New York and Seattle metropolitan areas population and social contacts dynamics at the community layer over time. (A) A
schematic illustration of the weighted multilayer and temporal network for our synthetic population built from mobility data. There are four different layers;
the school and household layers are static over time, and the combined workplace and community layers have a daily temporal component. (B) The geographic
penetration (fraction of mobile devices by population) from our mobility data compared to the total population for the New York and Seattle metropolitan areas.
(C) The average daily number of contacts in the community layer for both metropolitan areas.

information about where, when, and to what extent these SSEs
happen and how they may be mitigated or amplified by NPIs.

In this paper we use a longitudinal database of detailed
mobility and sociodemographic data to estimate the probability of
contact and transmission between individuals in different places
across the New York City, NY and Seattle, WA metropolitan
areas, during the period from 17 February to 1 June 2020
(SI Appendix, section 1). Note that the metropolitan areas
considered extend beyond the city limits for both locations. We
selected these areas because of their large differences in COVID-
19 epidemiology, population size, and density. The New York City
metro area has a population of 20 million people, while the Seattle
metro area has 3.8 million inhabitants. Moreover, the New York
City metro area has a higher density (5,438 people per square
kilometer, median by census tract) than Seattle (1,576 people per
square kilometer). Finally, the number of reported COVID-19
cases/deaths during the study period in the New York City area
was very large (223 per 100,000) compared to that in the Seattle
area (24 per 100,000). Individual mobility data are sampled to be
representative of the different census areas (census block groups)
(Fig. 1). Probabilistic estimation of contact between individuals is
weighted according to the likelihood of exposure between them in
the different places around the metro areas. This defines a weighted
temporal network consisting of four layers representing the
probabilistic estimation of physical/social interactions occurring
in 1) the community, 2) workplaces, 3) households, and 4) schools
(Fig. 1). The community and workplace layers are generated

using 4 mo of data observed in the New York City and Seattle
metropolitan areas from anonymized users who opted in to
provide access to their location data, through a General Data
Protection Regulation (GDPR)–compliant framework provided
by Cuebiq (SI Appendix, section 1).

The data allow us to understand how infection can propagate in
each layer by estimating the probability of transmission between
individuals in the same setting, including schools, workplaces,
households, and multiple locations in the community. Settings
associated to the community are obtained from a large database of
375,000 locations in New York City and 70,000 locations in Seat-
tle from the Foursquare public application programming interface
(API). By measuring the probability that people interact in the
different layers, we construct a probabilistic time-varying contact
network of ωijt between individuals i and j on the same day t in
the education, community, work, and household layers. Estimates
of transmission in the community layer are done by extracting
stays of users to the settings using different time and distance in
the setting. Our results are independent of the particular choice
of minimal time (5 or 15 min) and maximum distance to the
setting (10 or 50 m); see Fig. 1 and SI Appendix, sections 1 and 2
for more information about the data and layers. Our model
covers all possible interactions in urban areas and not just foot
traffic to commercial locations that people visit (7), something
especially important given the relevant role of households, schools,
or workplaces in the transmission of SARS-CoV-2. It is impor-
tant to note that the underlying data do not provide a direct
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Fig. 2. Evolution of the first wave. (A) Weekly number of deaths in New York (NY) and Seattle (ST) metro areas. The dots/triangles represent the reported
surveillance data used in the calibration of the models. The lines represent the median of the model ensemble for each location and the shaded areas the 95%
CI of the calibrated model (17). (B) Evolution of the effective reproduction number according to the output of the simulation. The solid (dashed) line represents
the median of the model ensemble and the shaded areas the 95% CI of the model. (C) Estimated prevalence in our model (median represented with solid/dashed
lines and 95% CI with the shaded area) and values reported by the CDC (dots/triangles represent New York and Seattle data, respectively) (18). (D) Estimated
number of deaths if the NPIs had been applied in New York 1 wk earlier/later. Solid (dashed) lines represent the median of the model ensemble and the shaded
areas the 95% CI. (E) Estimated evolution of the effective reproduction number if the measures had been applied in New York 1 wk earlier/later. Solid (dashed)
lines represent the median of the model ensemble. (F) Estimated prevalence in New York (Left) and Seattle (Right) if the NPIs had been applied in New York 1 wk
earlier/later and in Seattle 1 wk later. The height of the bars represents the median of the model ensemble, while the vertical error bars represent the 95% CI.
The dot/triangle shows the value reported by the CDC for the last week of April 2020.

measurement of contacts between individuals and the nature of
these contacts (masked/unmasked, with conversation). Rather,
our method uses these data to extrapolate the locations visited
by each subject and the amount of time the subject spent there,
to estimate the transmission probability between individuals,
relaxing the homogeneous mixing assumption commonly used
in mathematical modeling approaches. In simpler terms, our
method does not detect directly colocation of individuals, but
rather is a probabilistic estimation of the transmission between
them according to the time they spend in the same places or layers.

To model the natural history of the SARS-CoV-2 infection,
we implemented a stochastic, discrete-time compartmental
model on top of the contact network ωijt in which individuals
transition from one state to the other according to the
distributions of key time-to-event intervals (e.g., incubation
period, serial interval, etc.) as per available data on SARS-
CoV-2 transmission (see SI Appendix, section 3 for details). In
the infection transmission model, susceptible (S) individuals
become infected through contact with any of the infectious
categories (infectious symptomatic [IS], infectious asymptomatic
[IA], and presymptomatic [PS]), transitioning to the latent (L)
compartment, where they are infected but not infectious yet.
Latent individuals branch out in two paths according to whether
the infection will be symptomatic or not. We also consider that
symptomatic individuals experience a presymptomatic phase and
that once they develop symptoms, they can experience diverse
degrees of illness severity, leading to recovery (R) or death (D).
The value of the basic reproduction number is calibrated to the
weekly number of deaths (see SI Appendix, sections 4, 5, and 7
for further information on the calibration process, on the model’s

details, and for the sensitivity of our results toward different values
of parameters used in the model).

Results

Impact of NPIs. Our data clearly show that the statistics of
potential contacts in the two metro areas have changed due to the
introduction of NPIs during the week of 15 March to 22 March
(Fig. 1). A National Emergency was declared on 13 March, and the
New York City School System announced the closure of schools
on 16 March (13). The New York City mayor issued a “shelter
in place” order in the city on 17 March (14), and nonessential
businesses were ordered to close or suspend all in-person functions
in New York, New Jersey, and Connecticut by 22 March. As
we can see in Fig. 1 the individuals’ total number of contacts
decreased dramatically from around seven (in our community
layer) to below two. In Seattle, the reduction of contacts started 1
wk earlier than in New York City, coinciding with earlier closing
of some schools (15) and the Seattle mayor issuing a proclamation
of civil emergency on 3 March (16).

In Fig. 2 we report numerical simulations of the epidemic curve
that accurately reproduce the evolution of the incidence of new
COVID-19–related deaths in both New York and Seattle metro
areas, even though both cities were affected very differently by the
epidemic in the first wave. The analysis identifies the impact of
the reduction in the estimated number of contacts due to the
implemented NPIs: In both the New York and Seattle metro
areas, Rt dropped below one 1 wk after NPIs were introduced.
To estimate the importance of timely implementations of NPIs
in metropolitan areas, we have generated counterfactual scenarios
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Fig. 3. Spatial spreading of the disease. (A and D) The share of infections across layers in New York (A) and Seattle (D). (B and E) The estimated location where
the infections took place for New York (B) and Seattle (E) in the community layer. Note that the y axis is 20 times smaller in Seattle. The evolution has been
smoothed using a rolling average of 7 d. (C and F) The distributions are normalized over the total number of daily infections, showing how infections were
shared across categories in the community layer. The evolution has been smoothed using a rolling average of 7 d.

in which the NPIs and the ensuing reduction in the number of
contacts could have happened 1 wk earlier or later than the actual
timeline (19). The comparison between New York and Seattle is
relevant, because we observed that the reduction in contacts in
Seattle started to happen exactly 1 wk before that in New York. To
this end we have shifted in time the contact patterns around the
week where NPIs where introduced in both cities. The results for
these scenarios are reported in Fig. 2D, where we see that a 1-wk
delay in introducing NPIs could have yielded a peak in the number
of deaths two times larger than the observed one (0.7 deaths per
1,000 people compared to the 0.35 per 1,000). This doubling
in peak deaths following a 1-wk delay is also observed in the
Seattle metro area and in the cumulative infection prevalence in
the metro area. Conversely, a 1-wk earlier implementation of the
NPIs timeline in the New York area could have reduced the death
peak by more than a factor of 3, a result similar to that found using
county-level simulations (19). In Seattle, implementing the NPIs
1 wk earlier would have prevented the first wave of infections. For
this reason, the results are not shown in Fig. 2F.

Taxonomy of Transmission Events. The high resolution of our
dataset allows us to estimate the relevance of different settings and
the effects of NPIs on the transmission dynamic of SARS-CoV-2.
People spent different times in each layer and place before and after
the introduction of NPIs (SI Appendix, section 1). As a result,
the number of infections varied significantly during the observed
period. As we can see in Fig. 3, before NPIs were introduced, we
estimate that most infections took place in the community and
workplace layers. Once restrictions were implemented in both
cities on 16 March, as expected, the proportion of infections in
the household layer greatly increased, especially in the New York
area. In Seattle, the numbers of infections in the workplace and
household layers were comparable, probably because the number

of cases overall was lower than in New York. We can further stratify
data by venue type in the community layer as in Fig. 3, by looking
at the estimated top categories (see SI Appendix, section 1 for their
definition) in terms of the number of total infections throughout
the whole period. Before the NPIs were introduced, our model
estimates that most of the infections in the community layer
happened in food/beverage, shopping, and exercise venues. Also,
a significant number of infections happened in art/museums and
sport/events venues. After the introduction of NPIs, the number
of infections in exercise, sports/events or art/museums venues
decreases as expected. However, food, groceries, and shopping
venues became the main community setting for transmission in
both cities.

Superspreading Events. Our agent-based simulations also allow
us to estimate statistically the transmission events by a single indi-
vidual and estimate how many secondary infections the individual
generates. In Fig. 4 we report the distribution of the number of
secondary infections produced by each individual in the com-
munity layer only. This is driven by individual-level differences
in activity and those individuals the individual might interact
with. The distribution is highly skewed and can be modeled by
a negative binomial distribution with dispersion parameters (k)
of 0.16 (New York) and 0.23 (Seattle), in agreement with the
evidence accumulated from SARS-CoV-2 transmission data (9,
10, 20, 21). As a result, SSEs are likely to be observed. We
define a transmission event as a SSE if the individual infects
in a specific location category more than the 99th percentile of
a Poisson distribution with average equal to R (see ref. 8 and
SI Appendix, section 6 for further details), here corresponding to
an infected individual infecting eight or more others. Interestingly,
if we compare the distribution of secondary infections produced
before and after the introduction of NPIs, even though we see a
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Fig. 4. Behavioral superspreading events. (A and B) Distribution of the num-
ber of infections produced by each individual in New York (A) and Seattle (B)
up to the declaration of National Emergency. The distribution is fitted to a
negative binomial distribution yielding a dispersion parameter of k = 0.163
[0.159 to 0.168] 95% CI and k = 0.232 [0.224 to 0.241] 95% CI, respectively.
Insets represent the same distribution on the log scale and distinguishing
infections that took place before the declaration of National Emergency on
13 March and after that date.

clear reduction of SSEs, we still find a heterogeneous distribution
of secondary infections. Thus, the NPIs did not prevent the
formation of SSEs, but only significantly lowered their frequency.

Consistent with this pattern of overdispersion in the number
of transmission events, we find that the majority of infections are
produced by a minority of infected people: ∼20% of infected
people were responsible for more than ∼85% of the infections
in both metro areas (SI Appendix, Fig. S9). However, note that a
critical driver here of this phenomenon is that a large majority of
infected people (85% in the community layer) do not infect any
others in our simulations. Only a small fraction of infection events
(0.08%) are made of eight (or more) secondary infections.

Transmission events and SSEs did not happen equally in dif-
ferent settings or along time or geography. In Fig. 5 we show the
results of our simulations for the total number of infections pro-
duced in each category and the share of those infections that can be
related to SSEs (SI Appendix, Table S2). The combination of those
two features defines a continuous-risk map in which places can be
at different types of risk: 1) low contribution from SSEs and low
contribution to the overall infections, such as outdoor places; 2)
larger contribution from SSEs but low contribution to the overall
infections, such as sports/events, arts/museums or entertainment
before the introduction of NPIs; 3) large contribution to the
overall infections but with low contribution from SSEs, such as
shopping or food/beverage venues after the introduction of NPIs;
and 4) large number of infections and with large contribution
from SSEs, such as groceries. This classification has important
implications from a public health perspective. For instance, venues
in risk 2 do not have a major contribution to the overall infections
but might represent a challenge for contact tracing. Conversely, for
categories in risk 3 it might be easier to trace chains of transmission
but their total contribution is large. Note that this definition is
not static, but changes over time due to the NPIs imposed by
authorities. Indeed, looking at the weekly pattern of infections

(Fig. 5), we observe how some categories move to a different
quadrant due to the behavior of individuals. Although we estimate
that SSEs and infections were more likely in arts/museums and
sports/events in New York and entertainment and grocery in
both cities, our simulations show that the grocery category still
greatly contributes to the total number of infections, but does
not have as many SSEs after 16 March. On the other hand, we
estimate that SSEs were rare before 9 March in Seattle, but their
contribution doubled in the week of 9 to 15 March—when many
individuals probably went for supplies amid preparation for the
future introduction of NPIs. This observation includes implicitly a
very important message: A place may not be inherently dangerous;
rather, the risk is a combination of both the characteristics of the
place/setting and the behavior of individuals who visit it. This
suggests revisiting studies that find that settings could play always
the same role in the evolution of the pandemic (7).

Discussion

Our results emphasize the intertwined nature of human behavior,
NPIs, and the evolution of the COVID-19 pandemic in two ma-
jor metropolitan areas. Specifically, our results suggest that hetero-
geneous connectivity and behavioral patterns among individuals
lead naturally to differences in risk across settings and the genera-
tion of SSEs. In particular, the implemented partial or full closures
of different settings (e.g., sport venues, museums, workplaces) had
a dramatic effect in shaping the mixing patterns of the individuals
outside the household (22, 23). As a consequence, the settings
responsible for the majority of transmission events and SSEs varied
over time. In absolute terms, the food and beverage setting is
estimated to have played a key role in determining the number
of both transmission events and SSEs in the early epidemic phase;
however, this setting was among the first targets of interventions
and thus its contribution became zero over time because of the
introduced NPIs. On the other hand, settings such as grocery
stores, which consistently provided a low absolute contribution
to the overall transmission and SSEs, became, in relative terms,
a source of SSEs during the lockdown when most other activities
were simply not available. These findings suggest that there is room
for optimizing targeted measures such as extending working time
to dilute the number of contacts or the use of smart working aimed
at reducing the chance of SSEs. That could be especially relevant
to avoid local flareups of cases when the reproduction number is
slightly above or below the epidemic threshold.

Although the overall picture emerging from studying Seattle
and New York is consistent, it is important to stress that each
urban area might have specific peculiarities due to local trans-
portation, tourism, or other economic drivers differentiating the
cities’ life cycle. Our results suggest that a one-size-fits-all solution
to minimize the spread of SARS-CoV-2 might have very different
impact across cities. Furthermore, the results presented may not be
generalized to rural areas. Although large parts of the Seattle metro
area could be considered as rural, individual connectivity patterns
may be differently constrained by the generally lower population
density in some other parts of the country.

We note that less complex homogeneous-mixing models can be
enough to reproduce aggregated features of the spread of SARS-
CoV-2 in different cities (Fig. 2 and SI Appendix, section 7.10),
and detailed (although still homogeneous-mixing) aggregate visi-
tation patterns to places can be used to evaluate the average role
of places in the spreading (7). However, the model proposed here
incorporates both individual mobility behavior and the detailed
description of home, school, and workplace multilayer temporal
networks, thus allowing us to simultaneously capture key aspects
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Fig. 5. Dynamics of SSEs. Risk evolves with time as a function of the behavior of the population and policies in place. (A and B) Risk posed by each category per
week, defined using the corresponding map below. As a reference, the gray area on top shows the estimated weekly incidence. (C and D) The x axis represents
the fraction of total infections that are associated with each category, while the y axis accounts for the share of those infections that can be attributed to SSEs
in each category. Note that the fraction of infections is normalized over all the infections produced in all the social settings throughout the whole period. This
defines a continuous-risk map in which places with few infections and low contribution from SSEs will be situated on the bottom left corner. Places where the
number of infections is high but the contribution from SSEs is low are situated in the bottom right corner. Conversely, places with large contribution from SSEs
but a low amount of infections are situated in the top left corner. Finally, places with both a large number of infections and an important contribution from SSEs
are situated in the top right corner. The color associated to each tile in A and B is extracted from the position of the point in the plane defined in C and D. The
points in C and D show the evolution of the position of the categories arts/museum and grocery for each week, with the arrows indicating the time evolution.

of COVID-19, such as contagion overdispersion (superspreading
events, Fig. 4), the temporal evolution of the risk of infection
by social setting (Fig. 5), or the impact of school closures or
stay-at-home policies (Fig. 3). By having a better description of
mobility patterns at the individual level, our methodology relies
only on a minimal set of parameters, making it more generalizable
to other locations of epidemic context than models that encode
that behavior by fitting transmissibility parameters for places,
residences, cities, or even temporal periods (7).

Our modeling analysis does not have the ambition to sub-
stitute field investigations, which remain the primary source of
evidence. Some of the reported findings (e.g., the role of food
and beverage venues or groceries) appear to be in agreement
with epidemiological investigations (7, 24–27). Future empirical
analyses could provide further validation of our findings. Our
modeling investigation is based on real-time data on human
mobility/activity that provide an indirect proxy for infection trans-
mission. One of the strengths of this approach is that, different
from epidemiological investigations, the data can be retrieved in
real time and longitudinally, thus allowing us to quickly capture
possible changes in the most relevant settings for transmission.
Furthermore, our approach could help minimize the noisy and
biased data collection related to massive transmission events (28).
Yet, the approach used here is far from capturing all the finest
details of human social contacts and thus the estimates on the
contribution of different settings to SARS-CoV-2 transmission
entail an unavoidable uncertainty.

To properly interpret our results, it is important to acknowledge
the limitations of the assumptions included in our modeling

exercise. First, we have considered a decrease of the transmission
probability in outdoor compared to indoor settings of January
2020 (29). Although this choice is guided by empirical evidence
and our results are robust to this choice (SI Appendix, section 7),
further studies better quantifying the relative risk of indoor vs.
outdoor transmission are warranted. Second, our model neglects
to consider differences in the behavior that people follow when
in contact with each other. It is indeed possible that contacts
between relatives and friends have a larger chance of resulting in
a transmission event compared with interactions with strangers
(30). Third, we do not model nursing homes, which were severely
hit by the COVID-19 pandemic across the globe. However,
although they represent a key setting to determine COVID-19
burden in terms of deaths and patients admitted to hospitals and
intensive care units, they are possibly not central to capture the
transmission dynamics of SARS-CoV-2 at the population level,
which is the aim of this study. Although there is some location
information from hospitals, we do not model them. Nonetheless,
contact tracing studies from several countries have revealed that
transmission within hospitals is relatively low, and hospital staff
are more at risk from interactions with their coworkers (e.g., in
the breakroom) or out in their communities (31, 32).

In conclusion, the majority of NPIs introduced in large urban
areas in March 2020 were effective in dramatically slowing down
the first wave of COVID-19 by greatly reducing the number
of effective contacts in the population. Closing down schools,
businesses, workplaces, and social venues, however, took (and still
does take) an enormous toll on our economy and society. Our
results and methodology allow for a real-time data-driven analysis
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that connects NPIs, human behavior, and the transmission dy-
namic of SARS-CoV-2 to provide quantitative information that
can aid in defining more targeted and less disruptive interventions
not only at a local level, but also to assess whether local restrictions
could trigger undesired effects at nearby locations not subject
to the same limitations. Although nowadays the epidemiological
landscape has dramatically changed by the introduction of vac-
cines, the spread of more transmissible variants, and the buildup
of natural immunity, the results offered in this paper provide
unique insights on the transmission pathways of SARS-CoV-2 and
can be instrumental for the definition of location-based mitiga-
tion policies and for making informed decisions about high-risk
activities.

Materials and Methods

We used individual-level mobility data of over 0.5 million individuals distributed
in the New York and Seattle metropolitan areas during the months of February
2020 to June 2020 to estimate the day and type of venues where people might
have interactions that yield transmission events. To do that we extracted from
the mobility data the stays (stops) of people in a large collection of around
440,000 settings (33). With this information we built two synthetic populations,
one for each metropolitan area, in which agents can interact in different settings:
workplaces, households, schools, and the community (points of interest). We then
explore the transmission of SARS-CoV-2 using a compartmental and stochastic
epidemic model applied on top of this population.

The behavioral changes induced in the population by the introduction of
several NPIs are naturally encoded in the mobility data, allowing us to charac-
terize the effect of these interventions. We ran counterfactual simulations of our
stochastic epidemic model to understand that effect. Furthermore, the resolution
of these data allows us to characterize the spreading through different types of
venues at different stages of the epidemic, depicting a complex picture in which
the combination of both the characteristics of the place/setting and the behavior
of individuals who visit it determine its risk.

Finally, the information about the statistical heterogeneity of the contact pat-
tern of different individuals allows us to study the frequency and characteristics
of behavior-related SSEs. We study the likelihood of finding a SSE per setting
as a function of time by looking at the number of infections produced by each
individual in each location. A full description of the materials and methods is
provided in SI Appendix.

Data Availability. Mobility data are available from Cuebiq, available upon
request submitted to https://www.cuebiq.com/about/data-for-good/. Other data
used come from the American Community Survey (5y) from the Census, which
is publicly available at their website. Anonymized aggregated temporal contact
matrices data and code to run the models have been deposited on GitHub
(https://github.com/aaleta/NHB COVID).
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(MCIN/AEI/10.13039/501100011033) through Grant PID2020-115800GB-I00.
E.M. acknowledges support by Ministerio de Ciencia e Innovación/Agencia
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1 Mobility data
The mobility data was obtained from Cuebiq, a location intelligence and measurement company. The dataset consists of
anonymized records of GPS locations from users that opted-in to share the data anonymously in the New York metropolitan
area over a period of 5 months, from February 2020 to June 2020. In addition to anonymizing the data, the data provider
obfuscates home locations to the census block group level to preserve privacy. Data was shared in 2020 under a strict contract
with Cuebiq through their Data for Good program where they provide access to de-identified and privacy-enhanced mobility
data for academic research and humanitarian initiatives only. All researchers were contractually obligated to not share data
further or to attempt to de-identify data. Mobility data is derived from users who opted in to share their data anonymously
through a General Data Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA) compliant framework.

Our sample dataset achieves broad geographic representation for our two populations, in the New York and Seattle
metropolitan areas, defined as the Core Based Statistical Areas (CBSA) by the US Census1. CBSA are areas that are
socioeconomically related to an urban center. This provides a self-contained metropolitan area in which people move for work,
leisure or other activities. Some of the CBSAs we consider span several states. For example the New York CBSA contains
areas of the state of Connecticut, New Jersey, Philadelphia, and New York. We filter all anonymous devices which were not
observed each month, in order to make sure we had a stable population with enough granularity and representativeness of
agents over the whole period. The population and number of anonymous devices detected in the real data by census area are
highly correlated for both census county subdivision regions, with a ρ = 0.796 (Pearson correlation) with a CI between 0.783
and 0.807 for the New York region, and a ρ = 0.948 (Pearson correlation) with a CI between 0.937 and 0.957 for the Seattle
region. We built such correlations between the population for each county subdivision and the number of devices in our dataset.
Despite these large correlations our mobility dataset has a small income bias towards areas of higher income, specially in the
NY metro area. However, as shown in Supp. Section 7, our results do not depend on that bias.

1.1 Points of Interest
Fousquare Public API was used to retrieve a large collection of (Points of Interest) POIs in the NY and Seattle metro areas.
Although Foursquare data is also crowd-sourced resource, it exhibits some editorial control. Their database of POI not only
comes from users of their Swarm (check-in) platform, but is built by aggregating data over 46k different trusted sources2.
Several studies confirm that although none of the POI databases is complete, Foursquare is one of the best in number of POIs,
location accuracy and number of categories represented3.

We use a dataset of 375k Points of Interest (POI) in the New York metropolitan area and 70k Points of Interest in
Seattle metropolitan area collected using the public Foursquare API. Those POIs are categorized using the Foursquare
taxonomy of places which has ten main categories. There are also 638 subcategories, see4 for a complete list of them. We
manually curated every subcategory in the taxonomy to be reassigned to twelve new principal categories: Arts & Museums,
College, Entertainment, Exercise, Food & Beverages, Grocery, Health, Other, Outdoors, School Service, Shopping and
Transportation. In our database the New York metropolitan they are distributed as follow Art & Museum (2.1%), College
(2.9%), Entertainment (7.6%), Exercise (2.8%), Food & Beverage (17.7%), Grocery (2.6%), Health (7.5%), Other Places
(13.1%), Outdoors (8.2%), School (2.3%), Service (16.6%), Shopping (8.3%), Sport & Events (0.6%) and Transportation
(6.9%). For the Seattle metropolitan area POIs we have 69,906 POIs that are distributed as follows Art & Museum (2.7%),
College (2.3%), Entertainment (7.1%), Exercise (2.7%), Food & Beverage (14.5%), Grocery (2.1%), Health (8.1%), Other
Places (15.1%), Outdoors (7.8%), School (1.6%), Service (18.2%), Shopping (8.3%), Sport & Events (0.8%) and Transportation
(7.8%). Despite our dataset contains many venues and places which are companies or business, some evidence that our dataset
covers most of the public places comes by comparing them to official statistics: for example, we have 2,155 art galleries in the
NY metro area compared to the 1,500 estimation for NY City only. On the other hand we have 9,810 groceries in the NY metro
area in our POI database which compares quite well with the 11,791 grocery business reported by the U.S. Bureau of Labor
Statistics in their Quarterly Census of Employment and Wages in the NY Metro area5.

1.2 Stays
From the combination of the mobility data and the POIs we extract “stays”, as the unique places where anonymous users
stayed (stopped) for at least 5 minutes. Each device frequently broadcast its location to a central server by sending its latitude,
longitude, device ID, and the exact date and time of the event. When a person spends significant time at a single location,
measurement uncertainty will cause a number of events to be scattered around the actual location. To map these events to
a single stay with an accurate time and location, we use the Infostop algorithm6. First, to extract the locations of stays, the
algorithm clusters consecutive events together if the locations are less than 25 meters apart. The location of this cluster is
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computed by taking the median of the latitudes and longitudes. Moreover, to better estimate the location of places that are
visited frequently by the same user, the algorithm also checks whether different clusters appear within 25 meters of each other
and assigns a single consistent location to all connected clusters by recomputing the median latitude and longitude. Finally, a
stay is registered whenever at least two subsequent events are registered at one of these locations where the first and last event
respectively mark the start and end time of the stay. The minimum duration of a stay is set to 5 minutes to make sure we are
only including actual contact between people instead of people that, for example, pass each other on an intersection.

Some of the stays happen within or close to places (Points of Interest). We attributed a stay to the closest POI up to a
distance of 50m, otherwise that stay is discarded. We do not make this attribution if the closest place is further than 50meters
(see also the SI for a sensitivity analysis with other maximum distance to POIs). Although we use 50m as an upper bound,
in reality the average distance to the attributed POI is smaller, 19.43 meters on average in the metro areas of NY and Seattle,
which is smaller than the average distance between nearest POIs, 33 and 39 meters respectively. In areas with large numbers of
POIs like Manhattan, the distance to the attributed closest POI is even smaller. Note that we attribute each stay to a single POI
and in turn, to a single category of place. We have also checked that our results do not depend significantly on the 50 meters
threshold for the attribution of the stays (see Supp. Section 7). Stays are then aggregated at place level.

For privacy reasons, our data is obfuscated around home and workplaces to the level of Census Block Groups. Thus the
attribution between the mobility data and home and workplaces happen at the level of Census Block groups and not specific
POIs. We estimate the home Census Block Group of the anonymous users as the one in which they are more likely located
during nighttime. This results in a dataset of the places people stayed including the POIs in the community layer, the CBG of
their workplaces that anonymous users visited, and the most likely census block group of where the device owner lives.
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Figure S1. Evolution of the average number of stays in the Community layer per observed person for New York and Seattle
metropolitan areas. Vertical red dashed line indicates when National Emergency (N.E.) is established.

In Figure S1 we can see the daily evolution of the average number of stays per observed person for New York and Seattle
only in the community layer. Also in Figure S2 we can see the total observed number of stays in our datasets. Two weeks
before we can see that Seattle started to see a small change in the mobility behaviour, however, for New York City we can start
to see that pattern one week before the national emergency. The average number of daily stays per agent for New York before
the N.E. is 2.14 with a 95% CI [2.12, 2.17]. On the other hand, for Seattle is 2.05 with a 95% CI [2.02, 2.08]. After the national
emergency there is an abrupt decrease for both cities in the number of stays (see Figure S2). Two weeks after the national
emergency the average number of stays per person stabilized and starts to an slightly and steady increase. Eleven weeks after
the national emergency, the average number of stays per person has recovered slightly, but it did not recover its basal state for
both cities. The average number of daily stays per observed agent for New York after the N.E. is 1.83 with a 95% CI [1.81,
1.84]. On the other hand, for Seattle is 1.72 with a 95% CI [1.71, 1.74].

We can see in Figure S2 the daily evolution of the total number of stays to each category and their fraction distribution.
Figure S2 (a) for New York and (c) for Seattle represent the total number of stays at the community layer, we can see a similar
pattern as in in Figure S1 (a) before and after the national emergency. Figure S2 (b) for New York and (d) for Seattle show
normalized number of stays. We can see a reduction of non-essential places after the national emergency due to the social
distancing policies.

3/25



0 K

100 K

200 K

300 K

400 K

500 K

02/17 03/09 03/30 04/20 05/11 06/01

N
um

be
r o

f s
ta

ys
 in

 C

A

0

25

50

75

100

02/17 03/09 03/30 04/20 05/11 06/01

D
is

tr
. o

f s
ta

ys
 in

 C
 (%

)

B
New York

0 K

25 K

50 K

75 K

100 K

02/17 03/09 03/30 04/20 05/11 06/01

N
um

be
r o

f s
ta

ys
 in

 C

C

0

25

50

75

100

02/17 03/09 03/30 04/20 05/11 06/01
D

is
tr

. o
f s

ta
ys

 in
 C

 (%
)

D
Seattle

Arts / Museum
Entertainment
Exercise

Food/Beverages
Grocery
Health

Other Places
Outdoors
Service

Shopping
Sports/Events
Transportation

Figure S2. The comparative evolution of the number of stays (left) and distribution (right) of stays in the Community layer
for the different metropolitan areas, New York (top) and Seattle (right).

Finally, in Figure S3, we can see the comparison of the average time per stay for each city and category before and after the
national emergency. There is a significant decrease in time spent per stay for nearly each category in both cities. However,
the grocery and the transportation categories are those with the smallest change in the average time for both cities. Moreover,
the shopping category does not barely change in New York, but it does in Seattle. On the other hand the Food & Beverages
category decrease in New York, but it does not in Seattle.

2 Network structure

2.1 Agents
Our population consists of two different sub-populations, adults and children. Adults are sampled from anonymous individuals
in the mobility data collected by Cuebiq, each adult is associated with a home location assigned to a US Census block group
which is provided by our location data provider. We used those anonymous individuals to construct synthetic populations by
assigning them different socio-demographics using highly detail macro (census) and micro (survey) data. This procedure to
create synthetic representative households and demographic traits is documented in7.

Following this process we generate two synthetic populations, one for the New York metropolitan area and the other one for
the Seattle metropolitan area. The New York synthetic population consists of 565k agents (3.0% of the population in the New
York metropolitan area), 78.02% of them are adults and 21.98% are children. Distribution of age groups are shown in Figure
S4a where we can see the that our synthetic population age distribution compares well against the US census data. The same
happens for the household size distribution, where 31% of the households are of size two, 29.5% of size one and the rest are of
size three or bigger, see Figure S4b. The Seattle synthetic population consists of 106k agents (2.9% of the population in the
Seattle metropolitan area) with 76.7% of them adults and 23.3% are children. The age groups distribution is shown in Figure
S4c where we can see that they compare well with the demographic distribution. Household size distribution is very similar to
the NY metro area, with 27.2% of size one, 34.8% of size one and the rest of size three or bigger. In Figure S4d we can see the
comparison of our synthetic households population distribution against the US census data.

The population that we are using to build the contact matrices is statistically representative of the total population in the
urban areas. Previous work has shown that this sample of the population can accurately describe the number of visits, lifestyles
and the mobility of the whole population8, once it is re-scaled using post-stratification methods. Given that we re-scale the
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Figure S3. Average time per stay for each place category before and after the National Emergency (N.E.) for (a) the New
York Metropolitan Area and for (b) the Seattle Metropolitan Area.

transmissibility and the number of effective contacts to reproduce effectively the dynamics of the infection at the population
level, we believe that our results do not depend on the size of our sample

2.2 Contacts
Visits to different POIs were used to estimate probabilistically the contacts between anonymous users. Not that our estimation
of contact between individuals is not a direct observation of colocation events. Although the mobility dataset we use is large,
colocation events between individuals are still quite sparse. Because of this sparsity, and to protect individual privacy in our
analysis, we have adopted a probabilistic approach to measure co-presence (and probability of transmission) in all locations
mapped in the dataset. Our objective is to build the contact matrix ωi j between individuals i and j using those estimations of
co-presence in the different layers where those contacts are possible, Home, Schools, Workplace, and Community.

In order to explain better our approach let us consider the homogeneous mixing approach in a contact network perspective.
We assume to have N individuals who are homogeneously mixed. This implies that each individual is potentially in contact with
anybody else. Thus, we have a connection ωi j = 1, among each pair of nodes. Then, the rate of contacts ci for the individual
i is ci = ∑ j mωi j = m(N− 1), where m is an appropriate factor ensuring that the number of average effective contacts per
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individual unit time in the system is equal to κ . Hence,

κ = N−1
∑

i
ci = N−1

∑
i, j

mωi, j (1)

yielding

m =
κ

N−1 ∑i j ωi j
=

κ

N−1
(2)

This provides the usual expression for the rate of contact ω ′i j = κ/(N−1), that is multiplied by the transmissibility per contact
α to give the rate (or probability) of infection per contact. This finally leads to the force of infection of a susceptible as

PS→I = 1− (1− ακ

N−1
)I = 1− (1− β

N−1
)I ' β I

N
,

where β = ακ is the transmissibility used in homogeneous model and the last approximations is valid for very large N.
In order to go beyond the homogeneous assumption, from our data we can consider that individuals who are never visiting

the same places are never in contact. This is additional information of which we are certain. So for each individual we can list
each of the places p that they visit and assume that we can have a link between two individuals if they have the same place in
their list ω

p
i j = δi,pδ j,p, where δi,p = 1 if the place p is on the list of visited places of individual i and zero otherwise. This step

improves on the homogeneous assumption as it rules out possible contacts among individuals that can never meet. Further we
can consider that the potential contacts among individuals is larger for individuals that can meet in more than one place. We
can then define ωi, j = ∑p ω

p
i, j , thus considering that some individuals have more potential contacts. It is worth remarking that

we are still considering that each potential contact has the same weight as in the homogeneous assumption. In order to define
properly the contact rate/probability per unit time we need to use Eq. (1) thus defining

m =
κ

N−1 ∑i, j ωi j
=

κ

〈ωi j〉
(3)

where we defined 〈ωi, j〉 as the average weighted contacts among individuals. This yields the effective rate of contact among
individuals i and j as

ω
′
i j =

κ ∑p δi,pδ j,p

〈ωi j〉
(4)
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In order to improve further on this approach we can consider that places are not visited in a deterministic way. This implies
that each individual has a probability to visit a specific place that is 1/ni,p, where ni,p is the number of places visited by the
individual i in a given period. We can therefore define

ωi j = ∑
p

1
ni,p

1
n j,p

. (5)

This approach still considers potential contacts only among individuals however with a weight that depends on the variability of
places of each individual. As before the rate/probability of contact would be:

ω
′
i j =

κ ∑p n−1
i,p n−1

j,p

〈ωi j〉
(6)

So far we did not consider at all the time spent in each location. We can therefore improve on the probability to be in a place by
weighting the number of places ni,p by the time spent on average in each place. This finally leads to the expression:

ωi j = ∑
p

Ti,p

Ti

Tj,p

Tj
(7)

where Ti,p is the time spent by individual i at location p and Ti is equal to the sum of all time spent in places in the community
by individual i. In this case the rate of interaction will be:

ω
′
i j =

κ ∑p
Ti,p
Ti

Tj,p
Tj

〈ωi j〉
. (8)

This is the expression we use in our work. It is important to stress that this expression is improving on the homogeneous
assumption as it considers that effective contacts can occur only in places visited by both individuals, and considers that each
contact is weighted by the probability for each individual to be in that place. The approach however does not account for
concurrency of visits. In this respect it is still adopting an homogeneous perspective in that all places visited at any time
corresponds in a potential contact.

The next steps to improve on this approach would be indeed to consider concurrency of visits. It is thus tempting to consider
that each contact is weighted by Ti,p/T , where T would be the specific amount of time of the day. One could assume the 8
hours of the working time or the 24 hours cycle of the day. This is a tempting solution but introduces a number of issues. For
instance the time that should be considered in the normalization depends on the places. For instance restaurants have specific
bracket of times during the day, and concurrency should be evaluated on specific hours of the day and specific days (for instance
the week- end). The same is for places like movie theatres, museums etc. Furthermore, during the lockdown the concurrency
normalization should all be re-evaluated to be consistent in their definition as the number of hours in the community of the
population has drastically changed. In other words, we are not sure if the simple normalization by a fixed number of hours
although trying to capture the concurrency of contacts is actually introducing unwanted and uncontrolled biases. For this reason
we decided to work with the approach of Eq. (8), for which all the assumptions can be clearly stated and provides an obvious
improvement with respect to the fully homogeneous assumption.

Using our probabilistic approach to detect contacts, we build our contact network in each of the layers::

• Community weighted contact network. In the community layer contacts are built by estimating probabilistically the
interaction between two individuals who visit the same POI. Specifically, the weight, ωC

i jt , of a link between individuals i
and j within the community layer at day t is computed according to the expression:

ω
C
i jt =

n

∑
p

Tipt

Tit

Tjpt

Tjt
, ∀i, j (9)

where Tipt is the total time that individual i was observed at place p in day t and Tit is the total time that individual i has
been observed at any place set within the community layer that day t. The distribution of values of ωi jt is very broad. For
example in NY ωi jt as a mean of 0.395, a median of 0.279 and 25% and 75% quantiles of 0.095 and 0.65238 respectivelly.
Finally, for robustness and computational reasons, we have included only links for which ωC

i jt > 0.01, removing 2.88%
of the original links. For other values of the threshold like ωC

i jt > 0.005 and ωC
i jt > 0.02 we would remove 1.19% and

6.19% of the links respectively. Note however that since those links have very small weights, our results for the epidemic
spreading do not depend significantly of the threshold chosen provided that it is small.

7/25



• Workplace weighted contact network. For privacy reasons, our data is obfuscated around home and workplaces to the
level of Census Block Groups. To get a proxy of contacts at the workplace, we assume that all workers in the same
Census Block Groups have a probability to interact. To account for the potential number of working places in that area,
we weight that probability by the number of POIs at the same census block group. Therefore, the contact weight, ωW

i jt , of
a link between individuals i and j within the same workplace at day t is given by:

ω
W
i jt = ∑

α∈CBG
∑

β∈POI(α)

δiαt

NPOI(α)

δ jαt

NPOI(α)
= ∑

α∈CBG

δiαtδ jαt

NPOI(α)
, ∀i, j (10)

where POI(α) is the set of POIs in the census block group α , NPOI(α) is the number of POIs in α , δiαt is the binary
variable of observing or not an individual at her workplace within census block group α at day t. As before, we have
included only links for which ωW

i jt > 0.01.

2) Household weighted contact network. We first identify individuals’ approximate home place as their most likely
visited census block group at night. Then we assign a synthetic representative household and demographic traits as
documented in7. To assign weights, we assume that the probability of interaction within a household is proportional
to the number of people living in the same household (well-mixing). Therefore, the weight, ωH

i j , of a link between
individuals i and j within the same household is given by:

ω
H
i j =

1
(nh−1)

(11)

where nh is the number of household members. This fraction is assumed to be the same for all individuals in the
population. We assume this layer is static throughout our period.

• School weighted contact network. To calculate the weights of the links at the school layer, we mix together all children
that live in the same census tract. Interactions are considered well-mixed, hence, the probability of interaction at a school
is proportional to the number of children at the same school. Therefore, the weight, ωS

i j, of a link between children i and
j within the same school is given by:

ω
S
i j =

1
(ns−1)

(12)

where ns is the number of school members. This layer is removed on March 16 in both metropolitan areas to account for
the imposed school closure.

To calibrate the relative importance of each layer in the spreading process we further multiply the weights by their
corresponding κ . In particular, with κ = 4.11 in the household layer, κ = 11.41 in the education layer, κ = 8.07 in the
workplace layer and κ = 2.79 in the community layer7, see Eq. (8)

3 SARS-CoV-2 transmission model
To model the natural history of the SARS-CoV-2 infection, we implemented a stochastic, discrete-time compartmental model
on top of the contact network ωi jt in which individuals transition from one state to the other according to the distributions of
key time-to-event intervals (e.g., incubation period, serial interval, etc.) as per available data on SARS-CoV-2 transmission.
In the infection transmission model, susceptible individuals (S) become infected through contact with any of the infectious
categories (infectious symptomatic (IS), infectious asymptomatic (IA) and pre-symptomatic (PS)), transitioning to the latent
compartment (L), where they are infected but not infectious yet. Contacts between infected and susceptible individuals depend
on the contact network estimated for each day. Thus, the probability that a susceptible node i is infected by an infectious node j
in infectious compartment type and location l is:

P(Si + I j→ Li + I j) = 1− e−βtypewi, j,l(t)∆t (13)

where ∆t = 1 day. Latent individuals branch out in two paths according to whether the infection will be symptomatic or not.
We also consider that symptomatic individuals experience a pre-symptomatic phase and that once they develop symptoms, they
can experience diverse degrees of illness severity, leading to recovery (R) or death (D). The value of the basic reproduction
number is calibrated to the weekly number of deaths.

The values of all the disease parameters used for simulating the transmission dynamics are given in Table S1. Figure S5
shows the numerical distributions of these parameters as resulting from simulations of the model, computed for the case of New
York with R0 = 3.2 (see Supp. Section 4).
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Parameters Description Age group Value Ref.

r relative infectiousness of asymptomatic individuals - 50% †

k proportion of pre-symptomatic transmission - 50% 9

ε−1 incubation period (gamma distributed) - shape = 2.08 10

rate = 0.33

p proportion of asymptomatic - 40% 9

γ−1 pre-symptomatic period - 2 days 11

µ−1 time to isolation - 2.5 days

δ−1 days from isolation to death - 12.5 9

IFR infection fatality ratio 0-9 0.00161% 12‡
10-19 0.00695%
20-29 0.0309%
30-39 0.0844%
40-49 0.161%
50-59 0.595%
60-69 1.93%
70-79 4.28%
≥ 80 7.80%

Tn Notification of death - 7 days 9

θ outdoor transmissibility - 0.05 13

Table S1. Baseline set of parameters. †: assumed ;∗: calibrated to the generation time Tg; ‡ Only applied to symptomatic
individuals. As such, a correction factor of 1/(1-p) is applied to all age groups.

4 Calibration
The model has two free parameters: (1) the number of infected individuals in each city on the first day for which we have data
to build the interaction networks (02/17/2020) and (2) the value of R0.

The first date contained in our data is 02/17/2020, a time when it is estimated that there were already several infected
individuals in New York. In particular, we use the estimates provided by the GLEAM model14: 292 latent individuals in New
York City and 39 in Seattle. To initialize the system into such a state one could select that number of agents randomly from the
simulation and move them into the latent compartment. However, this would not resemble the real evolution of the epidemic,
which does not infect people at random but instead follows the path imposed by the behavior of individuals. For this reason,
we initialize the system with 1 infected individual and run the model in a loop using the networks of the first week available
(02/17/2020 to 02/23/2020). Once the estimated number of individuals is observed, the system starts to run in calendar time
from 02/17/2020 to 06/01/2020 (each step corresponds to 1 day). This allows us to start the simulation with the estimated
number of latent individuals in each city on 02/17/2020 without having to select them at random.

We use an Approximate Bayesian Computation (ABC) rejection algorithm to obtain the posterior distribution of R0. We
sample the transmissibility from a uniform prior so that R0 is in the range 1.5 to 4.5 and compare the output of the model with
the weekly estimated number of deaths as a consequence of COVID-19 for each city15. The obtained posterior distribution
P(R0 = x|E) is shown in Figure S6. The estimation of R0 as a function of the transmissibility is performed using the expression
proposed in16:

R0 =
r

∑
n
i=1 yi(e−rai−1 − e−rai)/(ai−ai−1)

(14)

where r is the growth rate and yi and ai represent the frequency and the bins of the histogram representation of the generation
time extracted from the simulation.

In Figure S7, we show the fitting of the model presented in the main text but without the curves corresponding to New York
to enhance the readability of Seattle curves.
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Figure S5. Numerical distributions of the model parameters extracted from the simulations performed for New York with
R0 = 3.2. The generation time distribution is well fitted by a gamma distribution with shape = 1.92 and rate = 0.35. The three
infectious compartments, asymptomatic, symptomatic and pre-symptomatic individuals are labeled as A, S, and PS,
respectively.

5 Effective reproduction number
The effective reproduction number can be estimated using case count data as reported by the authorities. We relied on the
technique proposed by Zhang et al.17, but a review of other techniques can be found in18 . In19, the authors estimated this
quantity for different areas of the world. As we show in Figure S8, R(t) in our model drops below 1 on the same date as in the
estimated R(t) from real data, signaling that the peak occurs at the same time in both.

6 Superspreading events
In heterogeneous populations it is possible for an infected individual to produce an usually large number of secondary cases.
This is known as a super-spreading event (SSE). To define a SSE we follow Lloyd-Smith et al20:

1. Estimate the effective reproduction number, R

2. Compute a Poisson distribution with mean R

3. Define a SSE as any infected individual who infects more than the 99-th percentile of the Poisson distribution within a
certain category of place.

In Figure S9 we test the hypothesis of the 20/80 rule according to which 20% of the infected individuals produce 80% of
the infections. Note that this does not imply that said 20% of individuals are super-spreaders. In fact, the large majority of them
do not produce any secondary infections, inline with what has been observed in highly detailed empirical studies21.

In Table S2 we report the probability of having a SSE within each category before and after the declaration of the National
Emergency. We observe a drastic reduction of the probability after 03/13.

7 Sensitivity analysis
7.1 Distance to POIs
While constructing the network, we attributed a stay to a given POI if it was no further than 50 meters from the POI center.
In this section we test more strict conditions for that attribution, i.e. a threshold of just 10 meters. Note that this more strict
condition for attribution lowers the number of potential visitors to the POI but also lowers the distance between people in the
venue, making physical contact more likely. In Figure S10 we show the results for this scenario.

A more restrictive definition of stay yields a much sparser network in the community layer, while it does not affect the
rest of the layers. We can see that to obtain the observed number of deaths under these conditions, the fraction of infections
attributed to the workplace layer is increased. Nevertheless, the distribution of infections across settings is fairly similar,
signaling that the results are robust to this definition.
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Figure S6. Posterior distribution of R0 given the number of weekly deaths in each region as evidence.
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Figure S7. Model fit to Seattle data as reported in the main text.

7.2 Model parameters
To test the dependency of the results with the values assumed in the model, we have explored three different scenarios: larger
transmissibility during the pre-symptomatic phase (k = 0.75), Figure S11; longer time from death to notification (Tn = 14 days),
Figure S12; and larger outdoor transmission (θ = 0.10), Figure S13. The results are consistent in all cases with only slight
variations on the value of R0.

7.3 Behavioral changes
The aggregated change in behavior due to the evolution of the epidemic as well as the introduction of non-pharmaceutical
interventions is already contained in the mobility data. This leads to the sudden drop in the number of contacts following the
declaration of the National Emergency. However, at the individual level, it might be possible that some individuals in the
dataset lowered their contacts due to having developed symptoms, even if in our simulations they do not get infected at all and
vice versa. But for anonymity reasons, it is not possible to relate the medical history of individuals and our agents and, thus, we
cannot know the reason why an individual might have changed her behavior. From the point of view of the individual this
observation is important, but since we are working on aggregated metrics this observation does not affect the results.

To demonstrate this, in Figure S14, we show the results in which we completely remove symptomatic transmission. This
extreme scenario would represent a situation in which every time an individual develops symptoms, she gets completely isolated.
As we can see, the overall results are close to the ones we have presented so far. The reason is that our model is fitted to the
number of deaths and, thus, the total number of infections is fixed (as a function of IFR). If we remove one type of transmission,
then the transmissibility of the other types has to be increased to achieve the same number of deaths, yielding similar results.

7.4 Economic and age bias
The complete sample of users is slightly biased towards higher income individuals. Specifically, the penetration ratio (number of
mobile phone users to adult population) in each census tract is correlated with the median household income, ρ = 0.28±0.02
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Figure S8. Effective reproduction number in both areas as obtained by our model and estimated by19.

in NY and ρ = 0.18±0.02 in Seattle metro areas. However the correlation of the penetration ratio with the number of people
above 64 years old in each census tracts is small ρ = 0.17±0.04 in the NY area or not significant ρ =−0.06±0.11 in the
Seattle area. To analyze the impact of this bias, we have investigated the dynamics of our model in a different set of users
obtained by downsampling each economic groups (median income quartiles in each metro area) to have a better representation
of them. In Figure S15 we report the results obtained using this new sample of users. As we can see, the results remain largely
unaltered, signaling that the distribution of contacts per type of venue is not affected by this bias.

7.5 Removing deaths in long term care facilities
We have tested the sensitivity of the results if we remove deaths produced in long term care facilities from the total amount
of deaths used to fit the model, Figure S16. We observe that the overall behavior is the same, although the number of total
infections required is smaller, yielding a lower prevalence.

7.6 Longer stays
We have tested the sensitivity of the results with a more strict definition of stay (minimum 15 minutes instead of 5 minutes),
Figure S17. We observe a slight increase in the Arts & Museums category before the declaration of the National Emergency,
and one in the Grocery category after the declaration. This indicates that individuals tended to stay for longer in groceries in
this period, but the rest of the results remain largely unaffected.

7.7 Differential age-susceptibility
There is preliminary evidence that children and adolescents have lower susceptibility to SARS-CoV-222. In figure S18, we
report the results when children and adolescents younger than 20 years have an odds ratio of 0.56 for being an infected contact
compared with adults. The main difference with the previous scenarios is that the fraction of infections in the school layer is
lower, but that does not have any impact on the rest of the results.

7.8 Larger household transmissibility
We analyze the effect of increasing the within household transmissibility after the declaration of the N.E. In particular, we
increase said transmissibility by 50% to account the extra time that individuals stay in the household. In figure S19, we show
that this produces an increase in the infections within the household layer during this period, but the rest of the results remain
largely unaltered.

7.9 Different weight choice
To properly calibrate the relative importance of contacts in each layer it would be necessary to know the exact empirical
contribution of each setting to the total number of infections. This is something completely unknown to this date, with estimates
that vary widely across regions and time. Indeed, since currently the only way to empirically obtain the information is through
surveillance systems, this task is very prone to errors, especially when cases are high, as in the scenario we are considering in
this manuscript. Furthermore, any intervention will modify the relative contributions, limiting the applicability of the results.
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For this reason, we have relied on the distribution of contacts across layers that has been estimated through multiple surveys
in a wide range of countries as a proxy to the relative importance of each layer. To further test the robustness of our results,
we have performed a sensitivity analysis on these weights. In particular, we have modified their values so that the fraction
of secondary infections produced up to the declaration of the National Emergency matches the one typically expected for
influenza. Namely, 18% in schools, 19% in workplaces, 30% in households and 33% in the community23. Note, however,
that the age-susceptibility for influenza is quite different than for COVID-19, and thus it is highly unlikely that this is the real
distribution of secondary infections.

Using this approach, we find that we can match the distribution of secondary infections previously described by simply
reducing the contribution of workplaces. In particular, we have to reduce the weight of the workplace layer by 70%. In figure
S20, we show that this does not alter the overall trend in the community layer, although the lower contribution of the workplace
layer produces an increase in the total number of infections in the community. As such, even though the total contribution
of each specific layer might change due to the weight distribution, we observe that the general dynamics described in the
manuscript are robust.

7.10 Comparison with simpler models
In this last section, we explore the advantages and disadvantages of using simpler versions of the model. In general, with much
simpler models it is straightforward to fit macroscopic characteristics of an outbreak such as the evolution of the number of
deaths. In this context, one simply needs to add a coefficient next to the transmissibility parameter that will diminish it when
the multiple non-pharmaceutical interventions are in place, and fit it to the observed number of deaths.

For this study much more resolution is required, since this allows us to: (i) leave as the only free parameter the values of R0
and the initial number of infected individuals, without artificially modifying transmissibility at any point (since the reduction
will already be contained in the behavior of individuals); (ii) explore the dynamics at the level of individuals, being able to
explore how some super-spreading events might unfold and compare it with the estimated values with great precision; and
(iii) study the dynamical behavior of certain places, rather than assuming that they are always risky or safe regardless of the
behavior of individuals. Admittedly, this last part of the study is the hardest one to compare with real data, but that is because
measuring this kind of phenomena is incredibly hard in the field, specially after the very initial phase of an outbreak. This
is precisely why this model in particular, an modelling in general, can help to shed some light into the dynamics that cannot
be easily captured trough traditional epidemiology. Furthermore, this modeling approach goes beyond the particular case
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Probability of a super-spreading event (%)

Category New York Seattle
Before 03/13 After 03/13 Before 03/13 After 03/13

Arts/Museum 7.30 [7.01-7.61] 0.52 [0.48-0.57] 0.31 [0.08-0.59] 0.00 [0.00-0.00]
Entertainment 2.42 [2.35-2.49] 0.14 [0.13-0.15] 2.16 [1.72-2.63] 0.21 [0.06-0.39]
Exercise 1.96 [1.91-2.03] 0.34 [0.32-0.36] 1.14 [0.88-1.43] 0.77 [0.51-1.06]
Food/Beverage 0.53 [0.51-0.55] 0.17 [0.17-0.18] 0.17 [0.11-0.23] 0.13 [0.10-0.17]
Grocery 2.18 [2.12-2.24] 1.31 [1.30-1.33] 0.58 [0.37-0.81] 0.93 [0.85-1.02]
Health 0.14 [0.12-0.16] 0.11 [0.11-0.12] 0.00 [0.00-0.00] 0.06 [0.02-0.10]
Other 1.61 [1.54-1.67] 0.10 [0.09-0.10] 0.40 [0.21-0.62] 0.04 [0.00-0.12]
Outdoors 0.03 [0.01-0.06] 0.00 [0.00-0.01] 0.00 [0.00-0.00] 0.00 [0.00-0.00]
Service 0.59 [0.56-0.62] 0.18 [0.17-0.18] 0.01 [0.00-0.02] 0.10 [0.07-0.13]
Shopping 1.43 [1.39-1.47] 0.84 [0.83-0.85] 0.14 [0.05-0.27] 0.09 [0.06-0.11]
Sports/Events 8.73 [8.32-9.14] 4.27 [3.90-4.66] 0.22 [0.00-0.56] 0.00 [0.00-0.00]
Transportation 0.26 [0.21-0.31] 0.04 [0.03-0.05] 0.00 [0.00-0.00] 0.00 [0.00-0.00]
All 1.73 [1.71-1.75] 0.71 [0.70-0.71] 0.93 [0.84-1.02] 0.34 [0.32-0.37]

Table S2. Probability that an individual will cause a super-spreading event as defined in20. We aggregate all the infections
produced by each individual within each category for the given period of time, and compute the fraction of individuals who
produce a super-spreading event out of the total number of individuals infecting someone in that category. In brackets the 95%
C.I. computed using a bootstrap percentile method is shown.

of SARS-CoV-2 and could be applied to future pandemics. Understanding that the role that some places might play in the
propagation of an emergent disease is a dynamic process, which depends not only on the characteristics of the place but also on
the behavior of individuals is thus of paramount importance.

To demonstrate the information that can be obtained using different levels of resolution, we explore three simplified versions
of our model:

1. Substituting the community layer by a network in which all the nodes who have been observed at least once in the
community are present every day, but connections are established at random each day with an average degree 〈k〉= 10.
Since the results could depend on the choice of 〈k〉, we further weight the links so that the average strength 〈s〉 (sum of
the weights of each node) is equal to the one contained in the full model. This also adds the effect of the reduction in the
strength observed in the data during the lockdown phase.

2. As the previous model, but with 〈k〉= 20.

3. As in 2), but every day only the nodes observed in the real data are present. Thus, this model can be described as a
complete randomization of the connections each day (so that the information on where those connection happened is
lost) and with 〈k〉= 20.

In figure S21, we show the results of the calibration process in these networks. The corresponding AIC for each model
is: 601.59 for the one using real data; 5692.04 for the one with fixed N and 〈k〉= 10; 5773.02 for the one with fixed N and
〈k〉= 20; and 647.58 for the one with variable number of nodes and 〈k〉= 20. Between the best two models, the ∆AIC = 45.99,
yielding a relative likelihood of Rel. Like. = e−

1
2 ∆AIC = 10−10. As such, of these four models, the one that betters fits the data

is the original one described in the manuscript. Several things are worth highlighting:

1. The two models that incorporate all the nodes in the community layer cannot be fitted properly to the data. In essence, if
R0 is too low the spreading is too slow. Conversely, for larger values the speed is correct, but the total amount of deaths is
much higher. The results shown in the picture where obtained after increasing the MAE used in the calibration of the
main model from 25 to 80, since no runs entered within the original threshold.

2. The result does not depend on the value of 〈k〉. This is to be expected since the average strength of each node, 〈s〉, is the
same in both cases.

3. When both the average strength (so that the specific choice of 〈k〉 does not play a role) and the diminishing of the total
number of nodes present in the community layer (as a consequence of the non-pharmaceutical interventions and the
stay-at-home mandates) are taken into account, it is possible to fit the model as in the complete scenario.
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Figure S10. Results with a more restricted definition of stay for the case of New York (10 meters): (a) estimated R0; (b)
number of deaths (fit); (c) estimated Rt ; (d) prevalence; (e) distribution of infections; (f) proportion of infections per layer; (g)
infections per setting; (h) normalized infections per setting.

The main problem behind models (1) and (2) is that, even though the strength is correctly adjusted, the presence of many
more individuals in the community than what actually happened increases too much the transmissibility. To solve this, some
models propose to reduce the transmissibility parameter (β in our case) by an amount extracted from the fitting. Another
possibility would be to compute the fraction of individuals that is observed each day and use it to reduce the transmissibility,
but that would imply using almost the same information that the full model contains, not making this choice any simpler.

Thus, in order to properly model the evolution of the outbreak in New York without adding more assumptions than the bare
minimum that are needed to work with the real data, at the very least we need to take into account the number of individuals
observed each day and the average strength (so that the choice of 〈k〉 will not play a role). This simplified version of the model,
even though able to capture the overall evolution of the outbreak, has nonetheless some limitations.

First, if we look at the distribution of the number of secondary infections (Fig. S22) we observe that this model does not
yield large super-spreading events. The reason is that the choice of the degree distribution has a direct impact on these events.
To obtain a super-spreading event it is necessary to have some heterogeneity, either in the transmissibility of specific settings
(for which we need information of where the individuals where plus an estimation of how the characteristics of each particular
place affect the spreading, something that even nowadays are still unknown), or in the number of connections of each node. Our
choice of degree distribution in the simplified versions of the model is the homogeneous distribution or random network model.
Of course, it would be possible to choose any other distribution, but that would imply making further assumptions on the type
of the distribution and on its parametrization. With the proposed approach, however, the heterogeneity comes directly from the
observed behavior of individuals.

Second, even if one uses an heterogeneous degree distribution while building the simplified community layer, the information
of the settings where infections may have taken place would be lost. Indeed, if we want to be able to say something about the
role of specific settings in the propagation of the first wave in New York, it is thus necessary to resort to a model with this level
of detail.

To summarize, the modeling approach we proposed in this manuscript is the simplest one of the four that can: (i) fit
the evolution with minimal assumptions and without adding any external events not contained in the data; (ii) describe the
distribution of the secondary number of infections; and (iii) shed some light on the dynamical role that some settings may play
in the context of a pandemic and their relationship with the behavior of individuals.

Furthermore, going to the individual level allows us to measure things that other models that use aggregated data cannot.
For instance, we can explore the number of secondary infections per individual, and observe the presence of over-dispersion.
The model that uses real data is the one that best matches the estimates found in the literature24.

This also allows us to explore the dynamic behavior of each setting in terms of potential super-spreading events. Admittedly,
the characteristics of certain locations might yield them more prone to such events, but the specific details of this are still
unknown.
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Figure S11. Main results in New York with larger pre-symptomatic transmissibility: (a) estimated R0; (b) number of deaths
(fit); (c) estimated Rt ; (d) prevalence; (e) distribution of infections; (f) proportion of infections per layer; (g) infections per
setting; (h) normalized infections per setting.

Model Over-dispersion

Real data 0.16
Fixed N 〈k〉= 10 3.02
Fixed N 〈k〉= 20 3.01
Var. N 〈k〉= 10 0.34

Table S3. Over-dispersion in the number of secondary infections obtained in each of the four models considered

Another quantity that can be measured in our model that it is not available in more aggregated models is the household
secondary attack rate. That is, the attack rate of a household in which the index case in said household is not taken into account.
In figure S23, we show how this quantity evolves with time. In the early phase of the pandemic, it is close to 20%, in line with
what is reported in the literature25. Then, during the stay-at-home period, this quantity is greatly increased reaching very high
values. This evolution might change depending on the assumptions behind the model, such as whether an infected individual
will try to self-isolate from the rest of the family or not. This will further depend on the help provided by the government on
this regard, the size of the households, etc. Although we did not focus on these elements for this study, they could be added in
the future to improve the model.
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Figure S12. Main results in New York with longer time to death notification: (a) estimated R0; (b) number of deaths (fit); (c)
estimated Rt ; (d) prevalence; (e) distribution of infections; (f) proportion of infections per layer; (g) infections per setting; (h)
normalized infections per setting.

Median: 3.0
95% CI:
[2.8−3.2]

0.000

0.025

0.050

0.075

2.8 3.0 3.2
R0

0.0

0.1

0.2

0.3

0.4

0.5

D
ea

th
s 

pe
r 1

,0
00

 in
di

vi
du

al
s

Model NY
Data NY

0

2

4

6

R(
t)

Model NY

0

5

10

15

20

25

30

Pr
ev

al
en

ce
 (%

)

Model NY
CDC NY

k=0.16

0

0.03

0.06

0.09
0.8
0.9

1

0 10 20 30
Infections in the Community layer

Fr
eq

ue
nc

y

0 1 3 5 10 30 50

Before 3/13
After 3/13

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 in
fe

ct
io

ns

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
fe

ct
io

ns
 in

 th
e 

C
om

m
un

ity
pe

r 1
,0

00
 p

eo
pl

e

0

20

40

60

80

100

In
fe

ct
io

ns
 in

 th
e 

C
om

m
un

ity
pe

r 1
,0

00
 p

eo
pl

e

Community
Education

Household
Workplace

Grocery
Shopping
Food/Beverage

Service
Health
Other

Entertainment
Exercise
Transportation

Arts/Museum
Outdoors
Sports/Events

2/17 3/9 3/30 4/20 5/11 6/12/17 3/9 3/30 4/20 5/11 6/12/17 3/9 3/30 4/20 5/11 6/1

2/17 3/9 3/30 4/20 5/11 6/12/17 3/9 3/30 4/20 5/11 6/12/17 3/9 3/30 4/20 5/11 6/1

P
(R

0)

10−7

10−5

10−3

10−1
1

A B C D

E F G H

Figure S13. Main results in New York with larger outdoor transmissibility: (a) estimated R0; (b) number of deaths (fit); (c)
estimated Rt ; (d) prevalence; (e) distribution of infections; (f) proportion of infections per layer; (g) infections per setting; (h)
normalized infections per setting.
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Figure S14. Main results in New York without symptomatic transmission: (a) estimated R0; (b) number of deaths (fit); (c)
estimated Rt ; (d) prevalence; (e) distribution of infections; (f) proportion of infections per layer; (g) infections per setting; (h)
normalized infections per setting.
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Figure S15. Results with a resampled population to remove economic bias in New York: (a) estimated R0; (b) number of
deaths (fit); (c) estimated Rt ; (d) prevalence; (e) distribution of infections; (f) proportion of infections per layer; (g) infections
per setting; (h) normalized infections per setting.
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Figure S16. Results when the model is fitted to a smaller number of deaths: (a) estimated R0; (b) number of deaths (fit); (c)
estimated Rt ; (d) prevalence; (e) distribution of infections; (f) proportion of infections per layer; (g) infections per setting; (h)
normalized infections per setting.
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Figure S17. Results with stricter definition of stay in New York (minimum 15 minutes): (a) estimated R0; (b) number of
deaths (fit); (c) estimated Rt ; (d) prevalence; (e) distribution of infections; (f) proportion of infections per layer; (g) infections
per setting; (h) normalized infections per setting.
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Figure S18. Results with differential age-susceptibility: (a) estimated R0; (b) number of deaths (fit); (c) estimated Rt ; (d)
prevalence; (e) distribution of infections; (f) proportion of infections per layer; (g) infections per setting; (h) normalized
infections per setting.

Median: 2.9
95% CI:
[2.8−3.1]

0.00

0.05

0.10

0.15

2.7 2.8 2.9 3.0 3.1 3.2
R0

A

0.0

0.1

0.2

0.3

0.4

0.5

D
ea

th
s 

pe
r 1

,0
00

 in
di

vi
du

al
s

Model NY
Data NY

B

0

2

4

6

R(
t)

Model NY

C

0

5

10

15

20

25

30

Pr
ev

al
en

ce
 (%

)

Model NY
CDC NY

D

k=0.16

0

0.03

0.06

0.09
0.8
0.9

1

0 10 20 30
Infections in the Community layer

Fr
eq

ue
nc

y

0 1 3 5 10 30 50

Before 3/13
After 3/13

E

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 in
fe

ct
io

ns

F

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
fe

ct
io

ns
 in

 th
e 

C
om

m
un

ity
pe

r 1
,0

00
 p

eo
pl

e

G

0

20

40

60

80

100

In
fe

ct
io

ns
 in

 th
e 

C
om

m
un

ity
pe

r 1
,0

00
 p

eo
pl

e

H

Community
Education

Household
Workplace

Grocery
Shopping
Food/Beverage

Service
Health
Other

Entertainment
Exercise
Transportation

Arts/Museum
Outdoors
Sports/Events

10−7

10−5

10−3

10−1
1

P
(R

0)

2/17 3/9 3/30 4/20 5/11 6/12/17 3/9 3/30 4/20 5/11 6/12/17 3/9 3/30 4/20 5/11 6/1

2/17 3/9 3/30 4/20 5/11 6/12/17 3/9 3/30 4/20 5/11 6/12/17 3/9 3/30 4/20 5/11 6/1

Figure S19. Results with larger household transmissibility after the declaration of the N.E.: (a) estimated R0; (b) number of
deaths (fit); (c) estimated Rt ; (d) prevalence; (e) distribution of infections; (f) proportion of infections per layer; (g) infections
per setting; (h) normalized infections per setting.
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Figure S20. Results with layer’s weight calibrated to the distribution of secondary infections per setting of influenza (18% in
schools, 19% in workplaces, 30% in households and 33% in the community): (a) estimated R0; (b) number of deaths (fit); (c)
estimated Rt ; (d) prevalence; (e) distribution of infections; (f) proportion of infections per layer; (g) infections per setting; (h)
normalized infections per setting.

0.0

0.1

0.2

0.3

0.4

0.5

D
ea

th
s 

pe
r 1

,0
00

 in
di

vi
du

al
s

Fixed N <k>=10
Fixed N <k>=20
Var.N<k>=20
Real data
Data NY

A

0

5

10

15

20

25

30

Pr
ev

al
en

ce
 (%

)

Fixed N <k>=10
Fixed N <k>=20
Var.N<k>=20
Real data
Data NY

B

2/17              3/9             3/30            4/20             5/11             6/12/17              3/9             3/30            4/20             5/11             6/1

Figure S21. Fitting the four models proposed. a) Evolution of the number of deaths as a function of time for each model,
fitted to the real data. b) Prevalence extracted from the output of the model (not fitted).
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Figure S22. Distribution of the number of secondary infections in each of the models considered. Only the model with
heterogeneous degree distribution yields a distribution of the number of secondary infections compatible with super-spreading
events.
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Figure S23. Household secondary attack rate in the baseline scenario for NY described in the main paper.
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