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Abstract

A paramount research challenge in network and complex systems 
science is to understand the dissemination of diseases, information 
and behaviour. The COVID-19 pandemic and the proliferation of 
misinformation are examples that highlight the importance of these 
dynamic processes. In recent years, it has become clear that studies 
of higher-order networks may unlock new avenues for investigating 
such processes. Despite being in its early stages, the examination of 
social contagion in higher-order networks has witnessed a surge 
of research and concepts, revealing different functional forms for 
the spreading dynamics and offering novel insights. This Review 
presents a focused overview of this body of literature and proposes 
a unified formalism that covers most of these forms. The goal is to 
underscore the similarities and distinctions among various models 
to motivate further research on the general and universal properties 
of such models. We also highlight that although the path for additional 
theoretical exploration appears clear, the empirical validation of these 
models through data or experiments remains scant, with an unsettled 
roadmap as of today. We therefore conclude with some perspectives 
aimed at providing possible research directions that could contribute 
to a better understanding of this class of dynamical processes, both 
from a theoretical and a data-oriented point of view.
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higher-order networks and with the aspiration that it will stimulate 
further empirical research.

To achieve this goal, we first discuss studies and observations 
motivating the introduction of higher-order interactions in social 
and epidemic contagion models. Additionally, we outline a set of 
open experimental questions that might be addressed with these 
approaches. We then present a unified formalization that covers the 
majority of models in the existing literature. Initially, we study this 
formulation in the limit in which pairwise graphs are recovered, aiming  
to glean insights into such processes. Subsequently, the section is dedi-
cated to an exploration of diverse approaches proposed for integrating 
higher-order interactions into these models, highlighting their similari-
ties and distinctions. We conclude by summarizing major challenges 
and offer theoretical and data-oriented perspectives to pave the way 
for further research of higher-order contagion models.

Phenomena motivating higher-order dynamics
In this section, we introduce the phenomena motivating higher-order 
dynamics in the study of complex systems.

Sociological motivations
The empirical investigation of coordination, norms and behaviours 
spreading across networks has garnered considerable attention14–19. 
Social contagion within networks, particularly the emergence of 
consensus without centralized institutions, stands out as a major 
area of interest20–25. Understanding the dynamics of social conta-
gion and change is a multifaceted challenge owing to the diversity of 
problems that span across many domains and contexts. Yet, certain 
commonalities prevail.

Tipping points hold a great deal of interest within this context. 
Described as a threshold at which a small quantitative change in the 
system can trigger a nonlinear process that leads to a different state 
of the system26, these points are central to critical mass theory. This 
theory posits that a minority of committed individuals, upon reaching 
a critical size, can overturn a social convention14. The concept finds 
ample validation in theoretical models25,27–29 and empirical studies30–38. 
Intriguingly, observed critical mass thresholds span several orders of 
magnitude, from 25–40% in some observational studies on social con-
ventions30 to as low as 0.3% for linguistic norm changes in English36,38, 
or even encompassing just a few individuals relative to the population 
size in social movements37,38.

A pertinent question arises concerning the mechanisms by 
which small groups evolve into committed minorities. Research 
spanning sociology, political science30–32,35,39, physics and mathemat-
ics4,7,10,25,27–29,40–48 has explored these group interactions, which are 
now gaining attention in the field of complex systems owing to recent 
inclusion of higher-order interactions in contagion models. These 
models offer richer dynamical behaviours, including abrupt transi-
tions, multistability and intermittency. An understanding of social 
contagion within an increasingly interconnected world is crucial and 
potentially could guide policy decisions. For instance, these models 
could facilitate the acceleration of societal changes to address societal 
challenges such as responding to climate emergencies24,26,49–53.

Epidemiological motivations
Realistic epidemic models often categorize interactions into four main 
groups: households, schools, workplaces and the broader community. 
These groupings not only serve as major sources of transmission but 
also offer a more feasible target for public health interventions than 

Key points

	• Contagion models in higher-order systems are motivated by 
problems relating to social interactions and to epidemics. There are 
various models and their interpretation changes depending on the 
context, but their mathematical formulation is similar and many models 
share key features and behaviours.

	• Identifying these general and specific properties of models will 
improve our understanding of higher-order systems as a whole. In this 
Review, we propose a unified formalism that covers most of the models 
in the literature.

	• Neglecting higher-order effects could completely change 
the process. For example, a discontinuous transition in a higher-
order system could be perceived as continuous in a projected 
pairwise system.

	• Data validation and social experiments on a large scale are still 
lacking. Although there are structural data for some systems, for 
many dynamical processes data remain insufficient.

	• The study of contagion models in higher-order systems is an 
inherently interdisciplinary endeavour, in which physics and 
mathematics can provide new insights and interpretations for social 
sciences and epidemiology, among others.

Introduction
Contagion models cover a wide range of processes, including the spread 
of diseases1–3, social contagion4 and rumour dissemination5,6. These 
diverse processes have been studied across various disciplines and 
from different perspectives. In the realms of physics and mathematics, 
contemporary approaches often incorporate heterogeneous interac-
tion patterns1–3. However, these models traditionally assume pairwise 
interactions, encapsulated within graphs, thereby limiting propagation 
to interactions between two individuals. More recently, this paradigm 
has been challenged, as new models have been proposed to account for 
group interactions using hypergraphs7–12 (Box 1). In other words, the 
paradigm changes from the one-to-one formalism to the one-to-many 
or many-to-many interaction types. An illustrative example to gain 
some intuition is evident in group chats of modern messaging appli-
cations, which enable one-to-many interactions, in addition to direct 
messages between users.

In the literature, the introduction of these models is typically 
justified by the aim of offering a more accurate depiction of specific 
social or epidemiological processes. However, most models remain 
predominantly theoretical, using these real-world phenomena as 
inspirations for model definitions, yet lacking empirical validation. 
This shortfall stands in stark contrast to the advancement in the theo-
retical underpinnings of these processes, which has grown prolifically. 
Various functional forms have been proposed to describe spreading 
in higher-order systems, accompanied by a diverse range of analytical 
techniques. These techniques span from classical approximations in 
graphs, such as heterogeneous mean-field (HMF) approaches, to inno-
vative methods such as facet approximation (FA)13. Thus, this Review 
emphasizes both the generalities and specificities of these models, 
aiming to aid future research in generalizing contagion theory within 
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do individual-based strategies. Intriguingly, epidemiological studies 
have revealed widely varied per-contact transmission probabilities 
within these settings, with households demonstrating the highest 
rates54–57. Larger settings exhibit distinct interaction characteristics 
compared with smaller groupings, a difference that has a notable 
impact on disease transmission dynamics58,59.

Moreover, the challenges posed by varying per-contact trans-
mission probabilities across different settings are compounded 
by dose–response dynamics in infection exposure and emerging 

insights into the mode of transmission for respiratory pathogens 
such as severe-acute-respiratory-syndrome-related coronavirus 
(SARS-CoV-2). Indeed, the minimal infective dose required to cause 
an infection depends on the characteristics of the pathogen, and thus 
the immune system does not respond equally to all exposures60. Simi-
larly, although traditional assumptions on the mode of transmission 
for SARS-CoV-2 centred around large droplets or fomite-based trans-
mission, surveillance data swiftly indicated airborne transmission as 
the dominant form of spread61–65, even in settings with close-range 

Box 1 | Structure of networked systems
 

A system of interacting individuals can be represented by different 
mathematical objects according to its type of interaction, namely, 
pairwise or higher order (see the figure, part a for a comparison 
between the two main higher-order objects), or according to its 
multilevel organization, which can be single-layer or multilayer 
(see the figure, part b). These objects are described formally as:

	• Graph or network: A simple graph is defined as a set of vertices 
connected by edges that are pairs of vertices (for example, 
a friendship network). A non-exhaustive set of reviews and 
books can be found in refs. 1,193,194.

	• Multilayer network: A multilayer network is a graph made up 
of multiple layers, each representing a different context. For 
example, one might construct a friendship multilayer that 
separates friends in different social circles or types of interactions 
(for instance, online and offline). Multilayer systems are 
particularly suitable for modelling interacting processes, such as 
epidemics and information spreading. Multilayer networks have 
many subtypes. We refer to Table 1 in ref. 195 for a comprehensive 
classification. A non-exhaustive set of reviews and books can be 
found in refs. 195–199.

	• Hypergraph: A graph in which hyperedges (generalized edges) 
can connect a subset of nodes instead of two nodes. An example 

is a collection of WhatsApp groups. Formally, the hypergraph H is 
defined as a set of vertices v{ }i=V  and a set of hyperedges e{ }j=E , 
in which ej is a subset of V with arbitrary cardinality ∣ej∣, that is, the 
hyperedge can contain any number of nodes. The total number 
of nodes is defined as = VN  and the number of hyperedges as 
M E= . Note that it is possible to extend the multilayer concept 
to hypergraphs.

	• Simplicial complex: A simplicial complex is a type of hypergraph 
whose set of hyperedges is complete, that is, all possible subsets 
of a hyperedge are also present. In this Review, when we use the 
term simplicial complex, we are referring to the abstract simplicial 
complex. Note that there is a distinction between the abstract 
simplicial complex, which is a hypergraph with downward 
inclusion, and the geometric simplicial complex, in which objects 
are continuous. For a full discussion, we refer to ref. 200. Another 
term for an abstract simplicial complex is an ‘independence 
system’ used in combinatorial mathematics.

We also note that in recent years, higher-order systems have been 
reviewed in refs. 7–9,11,12. Also, some perspective papers focusing on 
the study of higher-order systems are refs. 10,185,201, and an editorial 
was published in ref. 202.
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interactions66. Droplet-based transmission can be easily modelled as a 
pairwise interaction, but classical models struggle to address airborne 
transmission60,67,68.

Households are particularly suitable for modelling using higher-
order networks such as hypergraphs, especially concerning airborne dis-
eases. Despite their apparent simplicity, households exhibit compelling 
dynamics, notably showcasing higher secondary attack rates compared 
with other contexts for SARS-CoV-2 and influenza55,69–74, and an inverse 
relationship between secondary attack rate and household size75,76.

Airborne transmission also amplifies the probability of super-
spreading events, which are influenced by various biological, social 
and environmental factors59,77,78. Although nodes with large degrees can 
simulate such behaviour, it is essential to consider additional hetero-
geneities because context also shapes these events54,79. In fact, during 
the COVID-19 pandemic, it was observed that up to 70% of cases did 
not transmit the virus to anyone, and those who did typically infected 
just one or two others55,80–82.

Furthermore, social contagion elements also wield consider-
able influence on epidemic spread. Mask usage, which can reduce  
the transmission of respiratory diseases83–85, varies greatly around the 
world owing to cultural and psychological factors, as well as group 
dynamics86–90. Likewise, vaccination uptake is also influenced by 
social dynamics91,92, and some studies even demonstrate that indi-
viduals explicitly take into account group dynamics — akin to critical 
mass processes — to decide when to vaccinate93.

Other motivations
The relevance of contagion models is not limited to the epidemiologi-
cal or social context. Rumour models5,6 inspired and formed the theo-
retical basis for the gossip protocol94, a powerful paradigm used in the 
design of reliable and efficient decentralized distributed protocols95. 
The gossip protocol is widely used in peer-to-peer (P2P) networks95–97, 
including the Gnutella P2P network97, and cryptocurrency networks 
such as Bitcoin98,99 or Ethereum100 and their derivatives. Moreover, 
the application of the hypergraph theory has demonstrated its effi-
cacy in modelling wireless and 5G networks, as evident in the existing 
literature101–104. These instances suggest the potential for social con-
tagion models in higher-order networks to inspire novel protocols 
and methodologies.

Contagion on higher-order systems
There are many approaches to model contagion processes on higher-
order structures. In this section, we unify the most common contagion 
models in hypergraphs using a single equation that can be adapted to 
capture different behaviours, which can be either social or epidemic-
inspired. Importantly, we show that this equation can also be reduced 
to the pairwise case, emphasizing that the higher-order formulation 
is a generalization of the classical pairwise case.

We focus on the two most paradigmatic contagion models, the 
susceptible–infected–susceptible (SIS) and the susceptible–infected–
recovered (SIR), in hypergraphs. In the thermodynamic limit, the SIS 
model has a single absorbing state, whereas the SIR has infinitely many 
absorbing states. Here, we define a hypergraph, H, as a set of vertices, 

v= { }iV , and a set of hyperedges, E e= { }j , in which ej is a subset of V  
with arbitrary cardinality ∣ej∣. The number of vertices is N = V . 
If ∣ ∣emax( ) = 2j , we recover a graph. If for each hyperedge with ∣ej∣ > 2, 
its subsets are also contained in E, we recover a simplicial complex. 
In the contagion models, nodes can be in one of the three states: sus-
ceptible, infected or recovered (when applicable). Note that it is 

common practice to adopt an epidemic-spreading nomenclature even 
for social contexts. To model these states, we associate each node vi 
with three Bernoulli random variables, (Xi, Yi, Zi). Accordingly, suscep-
tible individuals are in the state (1, 0, 0), infected individuals are in the 
state (0, 1, 0) and recovered individuals are in the state (0, 0, 1). We note 
that the success probability of these Bernoulli random variables is not 
constant and follows a non-trivial form depending on the hypergraph 
structure and the state of the system.

The transition between states is defined as a collection of Poisson 
processes, defining a continuous-time Markovian process and implying 
that the dynamics have no memory. We associate a healing mechanism 
to each infected node, modelled as a Poisson process with parameter δ. 
Meanwhile, the propagation mechanism is associated with the hyper-
edges. So, given the hyperedge ej, assuming that we can factorize the 
spreading rate as a global contribution times a function of the hyper-
edge size, the spreading is modelled by a Poisson process with param-
eter λ × λ*(∣ej∣), in which λ*(∣ej∣) is a function of the cardinality of the 
hyperedge and can be used to modulate the infection rate. The final 
component of the model is a function that captures interactions among 
individuals within a hyperedge. Specifically, the function f Y({ })j

i  mod-
els how the hyperedge ej affects the state of the node vi. Note that the 
argument of such a function is the (infected) state of all nodes in 
the hypergraph, here denoted by the set {Y}. In this case, we assume 
that f depends only on Y’s and not on other states or the rates. Under 
these assumptions, the exact form of an SIS model in hypergraphs is

∑Y
t

δY λ λ e X f Y
d

d
= − + *( ) ({ }) , (1)i

i j v e j i j
i

: ∈i j

in which ⋅  is the expectation operator, λ can be thought of as the con-
trol parameter and λ*(∣ej∣) is a local parameter that weights each hyper-
edge differently depending on its cardinality (that is, the group size). 
Notably, although λ*(∣ej∣) could be absorbed into f Y({ })j

i , it has been 
left out to emphasize the individual contribution of each type of hyper-
edge to the process. Equation (1) covers the most commonly used 
models. However, not every higher-order contagion process is eas-
ily modelled using equation (1) (see also the section on other contagion 
models). Here, for organizational purposes, we have focused on an 
approach in which we can factorize the hyperedge-dependent rates, 
λ*(∣ej∣), and in which the functional form depends only on the state of 
the nodes inside the hyperedges, f Y({ })j

i , but other approaches can 
also be considered.

To describe the SIR model, we need an additional equation:

Z
t

δY
d⟨ ⟩

d
= ⟨ ⟩ . (2)i

i

To solve equation (1) in its exact form for an arbitrary hypergraph, 
we need to solve a system of 2N ordinary differential equations, which is 
not feasible in most cases. Note that to solve the exact Markov chain, we 
must describe all possible transitions between microstates. Because 
we have 2N possible microstates, we also need 2N equations in the exact 
model. However, in some cases, one can use structural symmetries to 
reduce the system size to N equations. For the simplicial contagion 
model, such an approach was formulated in a complete simplicial 
complex105, and for the social contagion model based on critical masses, 
such an approach was formulated106 for a homogeneous structure.

A few papers have presented some results for contagion models 
using general interaction functions. The SIS model on hypergraphs was 
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considered using a general formalism and studied in terms of both the 
exact equations and a mean-field (MF) approach107. When the functions 
f are concave, a spectral bound for the expected time to extinction and 
spectral conditions for the local and global stability of the zero-activity 
state can be derived45. Some of these results have also been extended to 
non-concave functions. In addition, temporal hypergraphs have been 
considered47, and a spectral threshold for the spreading rate below which 
the activity dies out has been obtained in terms of a static expectation 
matrix, which is an expected clique expansion of the hypergraph. Here, 
zero activity refers to an absorbing state in which there are no infected or 
active individuals. Conversely, we refer to active states as states in which 
we have a non-zero number of infected or active nodes.

In the next sections, we review some of the most popular spreading 
models in hypergraphs and simplicial complexes and show how they 
can be obtained from equation (1). We also present some generaliza-
tions, results and perspectives. Figure 1 is a graphical representation 
of the different types of interactions in higher-order networks. The 
one-to-one setting describes the pairwise model and the power-law 
contagion kernel presented in later sections. The many-to-one setting 
is used in the simplicial contagion model, whereas the many-to-many is 
used by the critical mass threshold model. The many-to-one interaction 
type can be modelled as a special case of the critical mass threshold 
model and has also been studied in ref. 108. We note that the one-to-one 
does not necessarily imply a lower-order interaction.

The pairwise SIS and SIR
These models have been reviewed elsewhere2,3 and are outside the 
scope of this Review. However, for the sake of comparison, it is instruc-
tive to recall a few results of phase transitions in graphs, such as local-
ization properties (Box  2), which are of particular interest for 
higher-order systems109,110. Furthermore, the standard SIS pairwise 
model can be recovered from equation (1) by setting the maximum 
cardinality of H to 2 and considering

f Y Y({ }) = , (3)j
i

k

in which ej = {vi, vk}. With equation (2), we would also recover the SIR 
pairwise model, but for the rest of the section, we will focus on the SIS.

Behaviour observed. In a homogeneous network, the transition is 
continuous, and the critical point is finite and non-zero. But one of the 
most important results of epidemic spreading in networks is that under 
an MF approximation, the critical point vanishes for networks in which 
the second moment of the degree distribution diverges111. For this 
reason, power-law networks, which have degree distribution P(k) ~ k−γ, 
attracted particular interest, because the second moment diverges 
for 2 < γ < 3. More generally, depending on the network characteris-
tics, the transition can be driven by different activation mechanisms, 
namely, collective, k-core or hub112–114. From a physics perspective, in the  
collective case, the whole network is active after the critical point.  
In the k-core case, the process is localized in the core of the network. 
Finally, in the hub activation mechanism, the process is localized 
around the hubs (Box 2). For multilayer networks, a similar argument 
has been made about the localization properties of the phase transition.  
However, in this case, there are additional scenarios: the transition can 
be delocalized or layer-localized115. When layer-localized, these scenarios 
for simple graphs may also apply.

Note that discontinuous phase transitions can also be found in epi-
demic processes in graphs but only in very specific cases. One example 

is a disease spreading in adaptive networks, in which agents change their 
connections depending on their state116,117. For a review of this topic, see 
ref. 118. One motivation117 to study the problem is to model how teachers 
should behave; if they are infected, they can be replaced. However, this 
seemingly rational behaviour backfires if the spreading rate is sufficient 
to infect the students before the teacher leaves. In this case, the move-
ment of teachers leads to a higher proportion of infected individuals, 
as more and more teachers become infected and carry the disease 
home with them. This outcome implies a discontinuous transition and 
hysteresis. Another example would be cooperative diseases119.

Analytical approaches. Most of the analytical approaches have been 
reviewed elsewhere2,3. In our context, the most relevant are:

•	 MF assumes that the system is completely homogeneous1–3,111.
•	 HMF, also called degree-based mean field, assumes statistical 

equivalence among nodes with the same degree, neglecting 
dynamical correlations and partially structural correlations1–3,111.

•	 Quenched mean field (QMF), also called individual-based mean-
field or N-intertwined mean-field approach, considers struc-
tural correlations but neglects correlations between individual 
states2,3,120,121.

•	 Pair-quenched mean field (PQMF) considers both structure and 
dynamical second-order correlations122,123.

•	 Approximate master equations (AMEs), which consider the state 
of nodes and their immediate neighbours, generate large systems 
of differential equations124–128.

•	 Discrete-time Markov chain approaches are also called micro-
scopic Markov chains (MMCs)129. In this approximation, struc-
tural correlations are considered, dynamical correlations are 
neglected and time evolves in discrete steps. This can be regarded 
as a discrete-time version of the QMF.

•	 Epidemic link equation (ELE) can be interpreted as the discrete-time 
version of the PQMF130.

An important result not covered in refs. 2,3 is the use of cumulative 
merging percolation to study the critical properties of the SIS process, 

Many-to-one

One-to-one

Many-to-many

One-to-many

Fig. 1 | Different types of interactions in higher-order networks. Functions 
are separated by how many individuals are required to make the hyperedge 
active and how many individuals are affected by that function. Here, red nodes 
represent infected or active individuals and blue nodes represent healthy or 
inactive individuals. For example, the pairwise interactions are of the form 
one-to-one. Note, however, that we can also have higher-order one-to-one 
interactions when the spreading rate depends on a nonlinear function of infected 
neighbours of a node. The other schemes are higher-order, and their main 
difference is the number of individuals needed to trigger the spread. This simple 
classification allows us to easily distinguish between different models.
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Box 2 | Dynamical behaviour
 

Following the nomenclature of statistical mechanics, we characterize 
a dynamical process using two quantities:

	• Order parameter: The order parameter ρ in the context of contagion 
is defined as the first moment of the distribution of the fraction na 
of active or infected individuals, P(na), or the average. Formally, 
ρ na= ⟨ ⟩, in which ⋅  denotes an expectation value.

	• Susceptibility: The susceptibility χ measures the variance of P(na) 
and can be interpreted as the derivative of the order parameter 
with respect to the control parameter. Formally, χ =

⟨ ⟩ − ⟨ ⟩
⟨ ⟩

n n
n

a
2

a
2

a
, 

following the suggestion in ref. 203.

We also define our process using the following terminology:
	• Control parameter: The control parameter in the context of 
contagion is the spreading parameter λ.

	• Critical point: The critical point is the point in the control 
parameter at which a phase transition is observed (see the 
definition described subsequently).

	• Subcritical and supercritical regimes: If the control parameter 
is below the critical point, that is, λ < λc, the process is in the 
subcritical regime. Conversely, if the control parameter is above 
the critical point, that is, λ > λc, the process is in the supercritical 
regime. Note that this is a simplified definition in which we exclude 
the Griffiths phase, as it has not been observed in contagion 
models on hypergraphs.

When a system changes from one macrostate to another, one says 
that it undergoes a phase transition. Note that, strictly speaking, a 
phase transition is defined only in the thermodynamic limit. However, 

a

b
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which provides an explanation of the mechanisms behind the phase 
transition131. The behaviour predicted by each theory is summarized 
in Fig. 2.

The SIS on hypergraphs
Early work on the SIS model on hypergraphs107 was motivated by the 
spread of epidemics in household structures, workplaces and schools. 
In that model, the infection pressure on susceptible individuals is not 
proportional to the number of infected individuals, so that

f Y m m c
c

({ }) = if <
otherwise

, (4)j
i 




in which m Y= ∑k v e v v k: ∈ ; ≠k j k i
. In addition to the exact formulation using 

the Kolmogorov equations, an MF analysis can be carried out; this 
approximation performs well for regular random hypergraphs. More-
over, when considering a structure that includes households and work-
places, the MF solution grows faster than the solution to the 
Kolmogorov formulation, but their steady-state solutions are close. 
(Note that in ref. 107 xi(t) is referred to as the state of node i, in which 
xi(t) = 1 denotes an infected individual.)

To model non-pharmaceutical interventions in realistic scenarios, 
a temporal hypergraph approach132 extends the model proposed in 
ref. 107 by considering both direct (person-to-person, that is, pairwise 
interaction) and indirect contacts (infection through an intermediary, 
a contaminated environment). The approach is mainly computational, 
based on agent-based simulations in which different interventions are 
evaluated. The results emphasize the role of personal protection and 
hygiene measures in slowing down the spread of the disease.

The simplicial contagion model
An approach40 to model social contagion processes such as opinion 
formation or adoption of novelties, in which complex influence mecha-
nisms and reinforcement are present, is to use simplicial complexes 

(a particular type of hypergraphs) and a multiplicative interaction 
function. From equation (1), the simplicial contagion model can be 
obtained using

∏f Y Y({ }) = , (5)j
i

k v e v v k: ∈ ; ≠k j k i

and replacing the hypergraph H by a simplicial complex. Note that the 
model still holds for an arbitrary hypergraph, as discussed in ref. 43. 
Therefore, in this section, we summarize the results for both structures. 
(Regarding the notation, in ref. 40, the recovery and infection rates are 
denoted by μ and βω, respectively, in which the spreading rates are indexed 
by the cardinality of the hyperedge, that is, the order of the interaction.)

Behaviour observed. In ref. 40, an MF approach is proposed for an 
arbitrary-order simplicial complex, with a focus on analysis of the sim-
plicial complex with dimension 2, that is, triangles and pairwise edges. 
Analytical and numerical results indicate a discontinuous phase transi-
tion with a hysteresis loop. The MF approximation yields a third-order 
polynomial equation on the order parameter, with two feasible and 
stable solutions separated by an unstable one. In practice, this means 
the system reaches one of the feasible and stable solutions, depending 
on the initial condition, resulting in a bistable regime.

Regarding the phase transition from the disease-free (inactive) 
state to an endemic (active) state, the interaction function in equa-
tion (5) has also been studied41 in uniform hypergraphs with a power-
law degree distribution. In a HMF approach, continuous transitions 
occur when the hub effect is dominant and hybrid transitions occur 
when the hub effect is weak41. In addition, critical exponents have been 
calculated analytically and validated numerically. Interestingly, in a 
QMF approach, a continuous phase transition can necessarily only 
exist if there are enough pairwise interactions42. This result is in agree-
ment with analytical results from a QMF approach, which formalize 
the critical and tri-critical points133. This result regarding the neces-
sity of pairwise interactions may seem to contradict the continuous 

it is common to use the analogue of this concept in finite systems. 
This transition can occur in many different ways (for a graphical 
example, see the figure, part a). The ones seen more often in 
contagion models are as follows:

	• First order: Both the order parameter and the susceptibility are 
discontinuous at the transition.

	• Second order: The order parameter is continuous, and the 
susceptibility diverges at the critical point.

	• Hybrid phase transitions: The order parameter is discontinuous 
and shows scaling. Thus, the susceptibility has a one-sided 
divergence204.

Besides phase transitions, other phenomena are relevant to 
contagion processes (for a graphical example, see the figure, part b):

	• Hysteresis: Hysteresis refers to the dependence of the state of 
a system on its past. That is, for the same value of the control 
parameter, the state of the system will be different depending on 
the path followed to reach it.

	• Localization: At the critical point, the transition may affect all 
nodes equally, or it may be restricted to some groups of nodes. 

One way to measure the localization of a system is to use the 
inverse participation ratio, IPR(v) = (∑i∣vi∣4), in which v has norm 
one. In this case, we are most interested in how this measure 
scales with system size, that is, IPR(v) ~ N−α. More details are given 
in refs. 109,110,115,191. We note that although this concept is 
defined at the critical point, it is often used in the supercritical 
regime. In such a case, the same ideas apply, but they have to be 
measured differently.

	• Multistability: More than two macrostate solutions are possible 
for a given set of parameters, depending on the initial condition.

	• Intermittency: The system presents high and low levels of 
macroactivity and alternates between them. This implies a 
bimodal distribution of states P(na) (ref. 106). In the figure, part b, 
the bimodal state distributions are shown in the side panels. 
We note that spreading processes in networks often have an 
unimodal bell-shaped distribution, and bimodal distributions have 
been observed in the critical mass model in hypergraphs. In this 
case, they were a consequence of the temporal intermittency 
(alternating periods of high and low activity) shown in the 
temporal evolution next to the distributions in the side panels.

(continued from previous page)
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phase transitions observed in ref. 41. However, it should be noted that 
analytically, in ref. 41, a HMF approach was used. In such an approach, 
the network is annealed, which is different from the QMF assumptions 
in ref. 42. Also, numerically, the simulations in ref. 41 start from a fully 
infected population that is not sufficiently close to the disease-free 
state and thus does not satisfy the assumptions of the linear stabil-
ity analysis used in ref. 42, in which near the disease-free state the 
probability of having (∣e∣ − 1) infected nodes is negligible.

Higher-order structures have less influence in the initial phase of 
spreading beyond the transition point134, where it is difficult or almost 
impossible for the process to gain prevalence if only higher-order 
interactions are present. This result implies that pairwise interac-
tions are necessary to activate higher-order structures. Then, after 
this period, the higher-order structures accelerate the spreading, 
making it converge faster to the stable (or metastable in the case of 
finite structures) state134.

Finally, multistability was found in the context of social conta-
gion in higher-order structures in the critical mass threshold model106 
(discussed subsequently). In this case, the ingredient that produced 
this behaviour was structural heterogeneity in the form of commu-
nity structure. However, this is not the only feature that generates 
multistability. In fact, heterogeneity in the propagation parameters in 
different orders of interactions may be sufficient to have multistability 
in a complete simplicial complex105.

Analytical approaches. The MF approach of ref. 40 disregards any 
structural and dynamical correlations. Alternatively, one can use the 
pair-based approximation, which explicitly describes the average 
correlations by taking into account the product between two random 
variables. This approximation is more accurate than the standard MF 
model on the random simplicial complex model135. Moreover, the pair-
based approximation predicts a slightly smaller bistable region when 
compared with the standard MF model.

The HMF approach has been applied to social contagion in hyper-
graphs108 and predicts that the critical point for the disease-free state 
(inactive or absorbing) only depends on the pairwise interactions. 

Similar results were also obtained using a dimensionality reduction 
technique136. Interestingly, the same theory also predicts that increas-
ing the heterogeneity in the pairwise interactions postpones the onset 
of bistable behaviour108.

The QMF technique was used4 in the critical mass social contagion 
model (which is discussed subsequently). Note that this approach can 
be derived from equation (7) (discussed subsequently) by setting 
Θj = ∣ej∣ − 1 to recover the simplicial contagion model and neglecting 
correlations in f j

i, which is a QMF requirement. We leave the discussion 
of this approach to the section on the critical mass threshold model.

Concerning discrete-time approaches, in higher-order systems, 
the MMC and the ELE show better agreement137 than the MF approaches 
when compared with Monte Carlo simulations in random simplicial 
complexes. The main disadvantage of the ELE is its analytical difficul-
ties137. Another discrete-time approach is the network clique cover 
approximation, called the microscopic epidemic clique equation, 
which uses a particular edge clique cover to account for dynamical 
correlations138. The microscopic epidemic clique equation usually 
performs better than the ELE and the MMC138. The disadvantage of this 
approach is its computational complexity, because it describes the 
system by N n C+ ∑ (2 − − 1)n

m n n
=2

( ) equations, in which C(n) is the number 
of projected cliques with n nodes138.

The AME approximation has been generalized109,110,139 to describe 
hypergraph contagion. The main advantage of this formulation is its 
analytical tractability, which allows for closed-form implicit expres-
sions for the critical and tri-critical points. This formulation assumes 
an arbitrary infection rate function and allows for an arbitrary group 
distribution. The results obtained with AME focus on a power-law infec-
tion kernel slightly different from equation (5) and thus are discussed 
in the section on the power-law infection kernel.

The methods described here are generalizations of network 
approaches and, with the exception of QMF and PQMF, they neglect 
structural correlations. However, in higher-order systems, it is 
expected to find nested structures13. Note that a simplicial complex 
is, by definition, a perfectly nested structure. To explicitly account 
for this feature, the FA has been proposed. In the FA, this correlation 
is accounted for by explicitly considering a local MF approximation 
on nested structures. This is the hypergraph generalization of the 
clique approximation124. Interestingly, by neglecting nestedness in 
the FA formalism, one can obtain the same set of equations as in the 
HMF108. The accuracy of the FA has been evaluated in a random model 
that interpolates between a completely nested hypergraph, that is, 
a simplicial complex, and a random hypergraph13. In a completely 
nested hypergraph, the FA predicted the transition points better than 
the ELE, HMF and MF approaches. Moreover, the FA on fully nested 
hypergraphs with only pairwise and triadic interactions predicts that 
infectious diseases can spread with lower pairwise infectivity, that is, 
an increase in hyperedge nestedness lowers the invasion threshold by 
promoting triangular infections. It also predicts the bistable regime 
when the triadic spread rate is large enough.

Model variations. Several modifications of the functional form f Y({ })j
i  

in equation (1) and even modifications of equation (1) have been pro-
posed to incorporate more realistic scenarios. Here, we mention some 
variations and approaches. The SIR model has been proposed140 in a 
simplicial complex; the process can be described and an expression 
for the critical point obtained using an MF approach. Another model 
studied in simplicial complexes is the susceptible-infected-recovered-
susceptible (SIRS) process, which is a combination of the SIS and SIR 
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C MP λc

H MF
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QMF

QMF*
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λc
Q MF

ρ decays exponentially ρ decays slowly Finite ρ

Fig. 2 | Susceptible–infected–susceptible prevalence ρ in the pairwise case 
according to the most common approaches. We present a summary of the 
predictions of some of the most common approaches, the heterogeneous mean 
field (HMF), the quenched mean field (QMF), the QMF theory as reinterpreted in 
refs. 191,192 (QMF*) and the cumulative merging percolation (CMP). In addition, 
λ λ,c

HMF
c
CMP and λ c

QMF denote the critical points for the QMF, CMP and HMF 
theories, respectively. We emphasize that, depending on the network structure, 
different analytical approaches may have the same critical point prediction. For 
example, for a power-law degree (k) distribution, P(k) ~ k−γ, with 2 < γ < 2.5, both 
the QMF and HMF theories predict the same critical point. Figure is adapted from 
ref. 131, CC BY 4.0.
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models. In this scenario, in addition to the discontinuous transitions 
and the bistability, the SIRS model also presents a stable limit cycle141. 
Similar effects have also been observed when births and deaths are 
included in the model; in this case, a steady periodic outbreak emerges 
under certain conditions142. Moreover, based on the model in ref. 141, 
a fractional SIRS model on simplicial complexes has been proposed143, 
which accounts for time delays caused by the latent and healing peri-
ods. In this case, a Hopf bifurcation occurs when the delay is larger than 
a critical value. A less common model that has also been put forward in 
this context is the susceptible-infected-water-susceptible (SIWS)144. 
In this case, a ‘water’ (W) compartment is an infection reservoir 
modelled as a hyperedge accounting for indirect transmission144.

The MF approaches presented in the previous sections aim to 
describe the process using a deterministic description of the mean. 
An alternative approach would be to use stochastic differential equa-
tions to model unpredictable or random interactions. The simplicial 
complex SIS has been studied under these assumptions145,146. The stabil-
ity of the origin has been characterized, and the parameter space has 
been partitioned into unstable, bistable and globally asymptotically 
stable regions146.

Temporality is another key element that has been incorporated 
into this class of models. This feature has been incorporated into sim-
plicial complexes using the MMC approach by considering only the 
neighbours and triangles that are active at a given time147. Focusing on 
homogeneous random temporal hypergraphs constrained to pairs and 
triangles, under the assumption that there are no correlations in the 
temporal structures, the effect of the higher-order contagion param-
eter was found to be much weaker compared with the static case147. 
This model has also been used in the analysis of a simplicial temporal 
network obtained from Wi-Fi data on a university campus148.

It is also possible to incorporate distrust dynamics in these models 
by adding directionality to simplicial complexes. In a model of group 
interactions, the sign of edges indicates trust (positive) and distrust 
(negative). When edge signs are randomly assigned and maintained 
during a group interaction, if distrust is increased, the transition 
changes from discontinuous to continuous as the bistability region 
associated with the first-order transition vanishes149. Conversely, it is 
possible to account for social balance theory by biasing the distribution 
of signs in groups of three individuals. In this case, contagion is deter-
mined by the relative proportions of balanced and unbalanced triangles 
and by which configuration within these two classes is more common.

Rather than adding more realism in the interactions, another line 
of research focuses on studying the problem of interacting processes. 
An example is the co-evolution of information and disease spread. Such 
a process can be modelled using a multiplex approach, in which the 
information spread is modelled by simplicial complexes and the disease 
is modelled by pairwise or higher-order interactions150–158. Still consid-
ering interacting processes but outside the multiplex framework, how a 
simplicial contagion could drive a simple contagion has been studied159. 
Above a critical driving force, the simple contagion could exhibit both 
discontinuous transitions and bistability. In addition, unidirectional 
coupling processes between a higher-order contagion and a simple 
contagion can impose a discontinuous transition and hysteresis in 
the simple contagion.

Although the works discussed earlier mostly focus on the interac-
tion between information and an epidemic process, there is also much 
interest in studying competing pathogens160. For two competing sim-
plicial SIS epidemics, a phase diagram with nine regions is obtained161. 
An MMC describing this process has been developed162, for which more 

accurate results are expected. In addition, a relevant feature of this 
type of process is homophily, which can be broadly defined as the ten-
dency to associate and bond with similar individuals163,164. An MMC has 
been extended163 to study simplicial competitive spreading dynamics 
between two states in the context of heterogeneous populations and 
homophily effects. Such an MMC approach was also used for the SIS 
model165 and the SIR166. Finally, competitive spreading has also been 
dealt with167.

As a side note, it is also possible to model deactivation as a group-
based process by incorporating higher-order terms in the healing 
mechanism. This mechanism has been called the ‘hipster effect’108, 
motivated by the fact that if a trend is popular, then individuals may 
be less likely to adopt it. With this modification to the model, the phase 
diagram exhibits a small band of bistability separating the regions of 
no infection and a single infected state.

The power-law infection kernel
The assumption that there is a linear relationship between the number 
of infectious contacts and the risk of infection has been challenged 
using COVID-19 data60. The data support proposing a power-law 
infection kernel defined as:

 


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in which ν can modulate the nonlinearity of the process. In particular, 
when ν = 1, we recover the linear case (pairwise), whereas social rein-
forcement and inhibition can be modelled by ν > 1 and ν < 1, respectively. 
Furthermore, if ν = 1, and λ*(∣ej∣) = ∣ej∣−η, in which η ∈ [0, 1], we recover 
the model analysed in refs. 109,110, in which the same authors used 
a bipartite representation to develop their analytical description 
of the model. (Regarding the original notation, in refs. 109,110,139, 
the number of infected nodes within a hyperedge is denoted as i(t). 
Another peculiarity of the notation in refs. 109,110 is that the number 
of nodes is denoted n, and the number of hyperedges — called groups 
in refs. 109,110 — is denoted m. We also note that, in ref. 109, ν is defined 
with a negative sign, and in the interval [0, 1], whereas in ref. 139, both 
the sign and the constraint are removed. Finally, these works also use μ 
to denote the recovery rate.)

Behaviour observed. In terms of sub-extensive localization (also called 
mesoscale localization in refs. 109,110,139), the behaviour is driven by 
the most influential groups (see Box 2 for a definition of localization). 
Localization also affects the phase diagram, with the effects being ampli-
fied by superlinear infection (ν > 1). In this case, the critical point scales 
as λ k ν

c max
− , and for λ near λc, the infected nodes are concentrated in the 

largest groups. This localization pattern inhibits bistability by forcing 
an endemic state with a very small global fraction of infected nodes139.

For the active state, the problem of maximizing influence has been 
considered60. Focusing on the early stages of the spreading, two strate-
gies were proposed for allocating initial seeds to influential spreaders 
or to influential groups. The group-based strategy tends to perform 
better for sufficiently nonlinear processes.

In a similar spirit, a relationship between core decomposition and 
SIS-like and SIR-like contagion processes has been studied168. Based on 
the concept of (k, m)-bipartite core decomposition169–171, a family of 
hypercore centralities was defined, and two versions were proposed: 
the size-independent hypercore and the frequency-based hypercore. 
Nodes inside cores with either higher degree, k, or cardinality, m, often 
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tend to be more infectious during the SIS process, implying that the 
process is expected to be more localized in this region of the hyper-
graph. Interestingly, in the Supplementary material of ref. 168, it is 
shown that the results are also valid for the critical mass threshold 
model (discussed subsequently). Moreover, considering the naming 
game in higher-order structures38, nodes inside the inner cores may 
be particularly efficient at overturning a majority convention if they 
belong to a committed minority.

Crucially, the core decomposition studied in refs. 168,172 is dif-
ferent from the percolation process with a similar name in ref. 173. The 
main difference is that in the bipartite core decomposition, the hyper-
edges that may be in an inner core may not be in the original hyper-
graph. This does not happen in the hypergraph core decomposition173.

Analytical approaches. A HMF of systems with a power-law infection 
kernel predicts a discontinuous phase transition, super-exponential 
spreading and hysteresis60. Alternatively, a group-based AME has 
been proposed to study this type of process109,110,139. The main advan-
tage of this approach is its analytical tractability, allowing closed 
expressions for the critical and tri-critical points. The AME approach 
was developed for an arbitrary spreading function. Focusing on the  
power-law kernel, equation (6), AME reveals that a large third moment 
of the cardinality distribution suppresses the discontinuous phase 
transitions with a bistable regime139.

The critical mass threshold model
The critical mass processes studied in the social and political sciences 
motivate the propagation function4,106:
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in which H(⋅) is the Heaviside function and Θj is a positive integer. Note 
that the simplicial contagion model discussed earlier can be obtained 
by setting Θj = ∣ej∣ − 1 and using the appropriate hypergraph. Similarly, 
with Θj = 1, one would recover the so-called individual contagion, in 
which nodes within a hypergraph are activated if at least one node 
is active108. (Regarding notation, in refs. 4,106, the critical mass was 
defined in terms of the indicator operator, whereas here we use the 
Heaviside function.)

Behaviour observed. A hybrid phase transition has been observed in 
this class of models. In a random regular graph with a single hyperedge 
covering each vertex (hyperblob), this transition has been character-
ized using an exact formulation and finite-size analysis106. This struc-
ture is probably not representative of real systems, but it provides 
an argument in favour of hybrid phase transitions in this model. Fur-
thermore, this argument is consistent with the susceptibility curves 
observed in real and artificial hypergraphs4,106. These results also agree 
with results for uniform hypergraphs with a power-law degree distri-
bution41, for which continuous transitions occur when the hub effect 
is dominant and hybrid transitions occur when it is weak (see also the 
section on simplicial contagion).

In spite of the critical behaviour, the critical mass threshold model 
also presents multistability and intermittency106. Both are related to 
the presence of a community structure. In the case of multistability, 
there can be multiple states for the same set of dynamical parameters, 
and a different state is reached depending on the initial condition. 
Multistability was also predicted in a complete simplicial complex with 

a specific rate distribution40. Interestingly, an important implication 
for the way norms evolve may be the presence of multiple equilibria23.

Regarding intermittency, the results in ref. 106 suggest that 
when bridges (hyperedges connecting two different communities) 
are scarce, the communities are dynamically disconnected. In that 
case, there may be multiple stable solutions for the same value of λ. 
Incorporating bridges allows the process to move across communities. 
However, adding bridges can destroy the multiple stable solutions by 
merging them into a bimodal distribution of states and creating inter-
mittency. We note that a similar effect was also observed by increasing 
or decreasing the hyperedge cardinalities of bridges and by changing 
the critical mass threshold Θ*.

Moreover, the same results for the relationship in core decomposi-
tion mentioned in the section on simplicial contagion models are also 
valid for the critical mass threshold model. In particular, the time to 
reach the metastable state for the SIS-like process is shorter when the 
initial seeds are in the inner cores168. Also, the final fraction of recovered 
individuals for the SIR-like process tends to be higher when the seed 
nodes are placed in the inner core.

Analytical approaches. A QMF approach has been proposed, and a 
closed expression for the critical point presented for the hyperstar  
(a star graph with a single hyperedge covering each vertex) and the 
hyperblob4. These results have been extended to a general hyper-
graph46, for which the stability of the disease-free (inactive state) was 
studied, and both global and local stability conditions were derived. 
Finally, the QMF approach could also capture multistability106.  
However, the intermittent behaviour is not captured by this approxi-
mation. The QMF captures the peaks of the state distribution as if they 
were metastable states106. This is indeed expected as the QMF neglects 
correlations and stochastic fluctuations.

The composite effective degree Markov chain approach (CEDMA)174  
is an alternative framework to analyse the critical mass model in 
hypergraphs. The CEDMA classifies nodes according to the number 
of neighbours and hyperedges in different states. Numerical experi-
ments suggest that the CEDMA presents a higher accuracy than the 
MMC174. The main disadvantage of this approach is the increasing 
computational cost when considering hypergraphs with higher 
cardinalities174.

Other contagion models
Despite the generality of the framework proposed in the section on 
the contagion on higher-order systems, there are other processes that 
also fit in the class of contagion models but whose formulation is not 
straightforward using equation (1).

A variation of the SIR model has been put forward48 to analyse 
higher-order connected components of mesoscale-connected struc-
tures. The mth connected component is a sub-hypergraph in which 
hyperedges are assumed to be connected if they share at least m nodes. 
This model could still fit in the form of equation (1), but the analysis 
would be somewhat more complicated.

A multistage model has been proposed to describe the spread of 
information driven by the spatiotemporal evolution of a public health 
emergency175. This model is a variation of the SIR model in which nodes 
can be susceptible or infected in areas affected or not by a public health 
emergency. An MF approach and the critical value have also been 
studied175. The contagion takes place on a simplicial complex with 
the functional form of equation (5). Moreover, a delay-differential 
approach has been studied136; in this approach, the interaction depends 
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on the delayed state of the active nodes. This model follows a function 
of the form of equation (5) but uses delayed states, that is, Yi(t − τ). 
Despite the model differences, the obtained critical point agrees with 
the results observed in other works176.

Digital contact tracing on hypergraphs has also been consid-
ered161. In this model, hyperedges can be in one of two states: traced or 
untraced. If the individuals in the hyperedge carry the contact tracing 
application, then spreading in that hyperedge is suppressed. A link 
percolation process is used to mimic SIR propagation, which is outside 
the models covered by equation (1). In artificial cases, digital contact 
tracing reduces the epidemic to a larger cardinality of hyperedges. 
However, in real hypergraphs, the impact of digital contact tracing is 
observed to be large for low spreading rates177. A different approach to 
contact tracing has also been proposed178, in which the group is traced 
as a whole, increasing efficiency.

Regarding immunization, strategies discussed in ref. 179 are: 
immunization of hyperedges with high simultaneous infection prob-
ability (defined as the product of the infection probabilities of the 
nodes in a hyperedge); a generalized version of the edge epidemic 
importance-based immunization strategy (previously proposed for 
graphs130) and immunization of hyperedges with high H-eigenscore in 
uniform hypergraphs (for its definition, we refer to refs. 180–182). The 
herd immunity of the population is achieved sooner with the strategy 
based on the simultaneous infection probability compared with the 
epidemic importance-based strategy and it has a lower computa-
tional cost179. A voluntary vaccination scheme has also been studied183, 
by modelling the spread of disease in an SIR scheme and capturing 
voluntary vaccination using a game theory approach.

Outlook
As discussed earlier, there is no unique generalization of the SIS model 
to higher-order contexts. However, the common feature of the higher-
order models is the presence of a nonlinear function f Y({ })j

i . The func-
tional form in the pairwise SIS and SIR models, the SIS model on 
hypergraphs and the power-law infection kernel model is inspired by 
epidemic processes, whereas the simplicial contagion model and the 
critical mass threshold model are motivated by social contexts. But if 
one chooses f Y({ })j

i  to be linear, then one can reinterpret the hyper-
graph as a graph with cliques and recover a weighted version of the 
classical SIS on networks. This argument is part of the debate about 
what is a higher-order system11,184,185.

Theoretical perspectives
Social contagion models on higher-order structures exhibit a wider 
range of behaviours than do pairwise graphs. For example, we have 
described discontinuous transitions, bistability or multistability and 
intermittency. However, new phenomena may yet be found. Higher 
interaction orders create a unique complexity horizon, the implica-
tions of which are still largely unknown. Similarly, a systematic charac-
terization of the phase diagram for the aforementioned functions still 
needs to be improved. Although some efforts have started to tackle this 
matter, outcomes remain predominantly confined to homogeneous 
structures. Studies exploring heterogeneous structures, particularly 
in general cases, are yet to be extensively explored.

A fundamental question is how general each behaviour is. In this 
Review, we have highlighted the similarities, as many models are 
dynamically described by equation (1), and the particularities, as each 
model has a different interacting function f j

i. A linear stability analysis 
suggests that, at least locally, they may share many properties. An 

exception should be made for the function in equation (7), which is not 
differentiable in the whole domain. Consider, for example, multistabil-
ity, which has been found in the critical mass model106 and in the com-
plete simplicial complex105. However, the generality of these results is 
unknown. In other words, is multistability present in any of the 
higher-order models?

Each newly identified behaviour also raises the question of its 
generating mechanisms. Still considering the multistability, in the 
critical mass model, it is associated with the presence of a community 
structure106. At the same time, it is associated with parameter heteroge-
neity in the full simplex case105. These are two different mechanisms that 
produce the same behaviour. So the natural question would be, what 
are the other mechanisms? Moreover, this structure has been shown 
to produce multiple transitions and even intermittent behaviour in the 
critical mass model. Would the same be true for the full simplex case? 
And under what circumstances?

These observations lead to a more fundamental question: what are 
the sufficient and necessary conditions for these behaviours? As briefly 
discussed in the section on the pairwise SIS and SIR models, we have 
a reasonable understanding of the mechanisms behind SIS and SIR 
behaviour on graphs, something that cannot be said for the higher-order 
cases. However, given that the graph is a special case of the hypergraph, a 
general theory should naturally extend these results. There are a number  
of analyses moving in this direction. One of them is studying the impact of 
localization in spreading processes, widely discussed in graphs115, and 
also discussed in higher-order cases110,139. However, a full understanding 
of localization, including its connection to graph cases, its generality and 
the transition mechanisms it might describe, is still lacking.

We emphasize that the functions proposed in the literature prob-
ably do not cover specific cases. Thus, studying and proposing new 
functions is also a direction for future work. However, the functions that 
model the interactions may turn out to be highly context-dependent, 
making model validation much more difficult. The same is true for 
multistage models. Because this field of study is relatively new, most 
of the literature focuses on the simplest models, namely, SIS and SIR, 
but as the field progresses, more realistic and specific models should 
be proposed. Other direct features that can be incorporated are data-
rich structures via edge-dependent vertex-weighted hypergraphs186 
and different temporal patterns, for example33,187.

Notably, most of the mathematical approaches presented here are 
based on extensions of graph-based MF techniques. These methods 
have proven to be very useful and have advanced the body of knowledge 
of higher-order systems. Despite this progress, higher-order systems 
seem to exhibit different types of correlations164, which may affect 
their accuracy. We note that a systematic analysis of the accuracy of 
each of the MF approaches presented here is yet to be done. Another 
perspective is that new higher-order specific techniques can be devel-
oped either to correct the MF approaches or to provide new ideas. An 
example of this would be the FA proposed in ref. 13 (see also the section 
on simplicial contagion).

Data-oriented perspectives
Models based on mechanistic principles enable the generation of test-
able hypotheses that can help understand an observed phenomenon. 
However, most studies to date have used observational data only as a 
motivation for their modelling choices, without testing any predictions 
on real data.

In the context of epidemic spreading, the COVID-19 pandemic 
presents a unique opportunity for model validation as extensive 
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surveillance data have been collected globally with unprecedented 
precision, despite its many limitations. However, very few works have 
used these data for model construction60,109,110, and examples of model 
validation are scarce188. We believe that a good starting point for such 
endeavours is the question discussed in the section on epidemiologi-
cal motivations, such as the nonlinear relationship among population 
density, exposure and infection risk55,60,66,72, the fact that larger settings 
exhibit distinct interaction characteristics compared with smaller 
groups58,67,69,70 and how group-mediated social contagion impacts mask 
wearing and vaccine uptake86,87,93.

Social contagion has been classically studied in laboratory experi-
ments with important constraints imposed by the desired observ-
able. In higher-order contexts, the challenges are even greater as, for 
instance, observing a discontinuous jump requires a large number of 
participants so that the transition can be unambiguously labelled as 
discontinuous. However, there are some features that may be easier 
to observe, such as localization or intermittency. Thus, there are still 
many questions to be addressed on how to design and implement such 
experiments.

In a broader perspective, even though there are a few ready-to-use 
real hypergraphs, there are many relational data sets out there that may 
implicitly include higher-order interactions. Think of co-authorship 
graphs in which two authors are linked together if they collaborated on 
a paper. It is straightforward to generalize the data to a hypergraph if 
information on who collaborated on each paper is available. However, 
in other contexts, this may not be that easy. For instance, a graph con-
taining social relationships may not include the context in which they 
were formed or where they usually meet. Along these lines, there are 
proposals to reinterpret existing data sets using Bayesian methods 
to infer higher-order data from already collected data189 or missing 
higher-order interactions190. But to properly validate these approaches, 
it would be important to take into account higher-order structures in 
the data collection process.

Published online: 5 July 2024
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